
V1.5.1
6-5-07

2

What’s New In Version 1.5 .. 3

Acknowledgements ... 4
An Introduction to SIPS .. 5

A Note of Caution about Chaining Scripts ... 5
Setting the Instrument Range .. 6
Assigning MIDI Controllers .. 6
Add-On MIDI Control ... 6
SIPS Preset System.. 7
User Presets ... 8
Naming User Presets ... 8
Updating Your Custom Presets to V1.5... 9
Auto Import Problems .. 11
Warning About Compact Compiler Output ... 11
Extending User Presets ... 12
Recall of Instrument Range ... 12
Import/Export of User Presets .. 12

About the Built-In Presets .. 13

SIPS Legato Script... 14
Introduction.. 14
Playing Legato .. 14
Use of the Sustain Pedal... 15
Playing Chords .. 15
The Legato Script Control Panel... 16

Understanding the Crossfade Contouring Controls ... 18
MIDI Control of the Crossfade Function .. 22

Understanding the Bend Contouring Controls... 23
MIDI Control of the Bend Function.. 24

Guidelines for Making Legato Settings .. 25

SIPS Vibrato Script .. 27
Introduction.. 27
Combining Vib-Amt and Envelope Control... 28
Humanizing the Vibrato Effect ... 28
Setting Random Drift .. 28
The Vibrato Script Control Panel... 29
Guidelines For Making Vibrato Settings ... 31

SIPS Tips, Techniques, and Musings
Theo Krueger... 32
Andrew Keresztes.. 33

Installing a 3rd-Party Script... 34
NKP Files ... 34
Running a Script ... 34
Source Files .. 35
Special Source Files.. 36
Placing the K2-Ready Source in the Clipboard ... 36

About Big Bob... 37

The Best Things In Life Are Free.. 38

Table Of Contents

First off, you’ll be glad to know that nothing has been done to damage the sound or musicality of either the
Legato or Vibrato scripts. Moreover, your investment of time in crafting custom presets will not be lost. Rather,
you will be able to easily transfer all your presets from V110 (or even V105/V1051) to V1.5 without the need to
manually re-enter any of the parameters, including custom CC assignments and settings.

In V1.5, the Solo-Mode Logic (which is fundamental to the operation of the SIPS-Legato Script) has
been completely redesigned. The new logic is much more efficient and easier to understand and maintain. And, by
taking over many of the functions previously relegated to the buggy and sometimes unpredictable KSP callback
triggering and sustain pedal logic, V1.5 will hopefully avoid many of the previously-observed anomalies. For
example, V1.5 should be useable in any script slot (including slot 1) and should also exhibit a fairly uniform behavior
between K2 versions (provided the version you are running supports all the necessary user interface elements). The
old logic also required nearly double the polyphony actually needed because of muted notes that were used (to
work-around some KSP quirks). The new Solo-Mode Logic doesn’t require such work-arounds and thus requires
less polyphony and, more importantly, doesn’t pass on any muted notes to higher script slots.

Prior versions of the SLS offered two release modes; Knob Setting and Key-Up/BTime . In the
Key-Up/BTime mode, the prior note (the one fading out during the crossfade) would begin its note-end release
phase when the corresponding key was lifted or when the BTime setting expired. This latter dependence on BTime
was an artifact of the old Solo-Mode Logic rather than an intended ‘feature’. With V1.5, the new logic eliminates
BTime’s involvement. Now the two modes simply begin the release phase when the Knob Setting percentage of
XTime has been reached (in the Knob Setting mode) or, when you lift the corresponding key (in the Key-Lift
mode). This latter mode is now independent of the BTime setting (as it should have been all along).

Assigning a MIDI CC to control various SIPS parameters has been made easier and more flexible. Instead
of an Edit box where you dial in the CC# that you want (with 0 meaning none and -1 meaning the Pitch Wheel),
V1.5 provides a drop-down menu of controllers for you to select. These menu choices are annotated with their
customary MIDI associations (per the MMA). In addition, there is a ‘learn’ feature for when you aren’t sure which
CC# is controlled by some physical slider or knob on your keyboard. Once a CC is assigned to control a parameter
in one of the SIPS scripts, prior versions would block further propagation of such assigned CCs. V1.5 no longer
blocks assigned CCs so you can now assign a single CC to control multiple parameters if you wish (even
parameters in two or more separate scripts). V1.5 of the SVS has improved upon the way you control the overall
Vibrato Amount. There is now a MIDI-controllable Knob for setting Vibrato Amount as well as a new drop-down
Menu that allows you to select Knob Only, Envelope Only, or Both.

Finally, V1.5 uses the new ISCS (Inter-Script Communication System) module for more efficient data and
message transfers between scripts including preset import/export. Using the ISCS also paves the way for allowing
SIPS to be more easily chained with other scripts in the future. Initially, V1.5 includes the code needed to allow
SIPS to be chained with the VXF (Nils Liberg’s Velocity Crossfade Script). However, the ISCS is a generalized
module that should eventually allow SIPS to be used with other scripts as well (as soon as the authors involved get
together to work out the details).

I encourage you to re-read this entire User’s Guide in order to get the most from V1.5. There have been
many small, and sometimes subtle changes made to this manual to bring it current. As a minimum, you should
carefully read ‘An Introduction To SIPS’ starting on page 5. If you want to get the most musical results from SIPS,
reading and understanding all the material presented in this User’s Guide is essential.

3

4

I want to take this opportunity to thank everyone in the K2 community who played some part in the
development of these scripts, both the original release and various updates. Many of you offered useful ideas and
suggestions and many others offered encouragement. Since I’m not involved in orchestral work, I’ve had to depend
upon others to try the scripts with their libraries and provide feedback as to the musicality and usefulness of the
scripts in an orchestral context.

I want to thank Gary Lionelli who provided much useful feedback about the script’s musicality and
participated in the early development of the human interface for the initial release. I especially want to thank Theo
Krueger and Andrew Keresztes for ‘jumping in with both feet’ in the eleventh hour when Gary’s workload made it
impossible for him to continue. Theo developed most of the Legato Script presets and Andrew developed the rest.
The Vibrato Script presets were developed by Theo Krueger, Andrew Keresztes, and Martin Nadeau. I also want
to thank Martin for doing a very meticulous job of proof-reading the orignal User’s Guide and finding most of my
mistakes (you’ll have to find the rest, especially in the revised manuals). Theo, Andrew, and Martin also created
some very nice mp3 demos for each preset that they developed. Finally, to more fully showcase SIPS in an
orchestral context, Theo and Andrew composed several impressive multitrack orchestrations that are sure to
become classics.

I also want to thank Nils Liberg for developing and sharing his KScript Editor with us because it has made
writing and maintaining the source code so much easier. I also want to thank both Nils Liberg and Frederick Russ
for taking over hosting of the SIPS Download and Demo pages since Theo’s web site became history. I also need
to thank Nils for his willingness to take over maintenence of SIPS during my on again off again health problems.
While my health still continues to be somewhat uncertain, the recent addition of a pacemaker has started to make a
positive difference; enough so that it allowed me to tackle generating this V1.5 update. The Good Lord willing, I
might soon be able to take full responsibility for SIPS again. In fact, I’m already starting to think about V2 ;-).

Finally, my heartfelt thanks to all of you on the forums who have posted so many kind remarks and
encouraging thoughts. I also appreciate the many emails and PMs expressing your concern for my health situation
and of course I especially appreciate your prayers on my behalf. I’m sure that your prayers in no small way were
responsible for my being able to provide this new version and so it is my sincere hope that you will enjoy and benefit
from this latest update of SIPS.

May God Bless all of you,

Bob

The Solo Instrument Performance Suite, SIPS, is a collection of K2 Scripts that, when chained, are
designed to work together harmoniously to provide a useful number of effects often referred to as performance tools.
Initially, SIPS has been released with two member scripts — the SIPS Legato Script and the SIPS Vibrato
Script which will be referred to hereafter as the SLS and SVS respectively. The KSP currently provides for up to
5 chained (cascaded) scripts that can be assigned to each instrument. So, up to 3 more member Scripts may
eventually be developed and added to the suite.

SIPS is intended to be used with Solo, monophonic instruments. As such, SIPS is designed with a
Solo-Mode Control Logic, similar to that provided with many synthesizers. This doesn’t mean that you can’t use
SIPS with sectional or layered samples (when that might be appropriate), it just means that ordinarily, you won’t
be playing chords. However, for playing an occasional chord, SIPS allows you (under MIDI control) to disable the
Solo-Mode Logic at any time you wish (see page 15).

The Solo-Mode Logic for SIPS is contained within the SLS. Thus, the SLS must be positioned first in the
chain, with the SVS following it. While the SLS can be loaded and run by itself, the SVS cannot be run by itself
since (for proper operation) it depends upon the Solo-Mode Control Logic provided by the SLS. Thus, if you
disable the SLS (or if the SLS is bypassed or not even installed), the SVS will automatically disable its effect.

A Note of Caution about Chaining Scripts
All the member scripts in SIPS have been designed to work together when they are chained in the stipulated

order. However, this is not necessarily true of scripts in general. Scripts often interfere with each other, sometimes in
strange ways. So generally you should not put any scripts in front of or after SIPS member scripts unless you know
for sure that they are compatible with SIPS (and each other). I’m sure that many of you have experienced these
incompatibility problems first hand when trying to combine two or more of your favorite scripts. While there is no
simple solution for this problem, a number of techniques have been developed and some progress is being made.

In order to chain scripts, among other things there will usually be a need for the scripts to communicate with
each other and to pass data back and forth. The member scripts of SIPS are no exception to this. However, the
KSP doesn’t provide any convenient means of data sharing between scripts so, in the past, script writers have been
forced to adapt various ad hoc schemes (usually using MIDI CCs) to provide a crude form of interscript
communication. To provide a more general and powerful solution, a new ‘importable’ module named the ISCS
(Inter-Script Communication System) was developed. This module provides a variety of services to help script
writers to make their scripts chainable. V1.5 of SIPS is the first suite of scripts to use the ISCS but hopefully others
will follow.

Nils and I have been working together to make SIPS and his VXF Script (Velocity Crossfade Script)
chainable. To this end, V1.5 of SIPS includes the code needed to interface with the VXF and probably soon after
you read this, Nils will have updated his VXF with the necessary code to interface with SIPS. If this integration of
SIPS and VXF is successful, there may be other joint efforts to make various scripts compatible. To make that
process easier and more uniform, we will make the source code for the ISCS available to the K2 Scripting
community, free of charge. However, full usage of the ISCS in a hosting script requires that the host script be
assigned a unique Script ID code so it can unambiguously be identified by other scripts using the ISCS. I guess I’ll
take on the job of assigning these numbers to script writers but, I’ll be counting on each script author to cooperate
with the process. The ISCS also supports a limited mode which allows a non-registered host script (one with no
assigned SID) to receive Omni Messages and data and to utilize the ISCS support for local Pseudo-Calling.

5

6

Setting the Instrument Range
For things like keyswitches to work properly, it is important that all the scripts in SIPS know the normal

instrument range. The Instrument Range is set with the first script of the suite (currently the SLS) using the
following procedure. In the upper right-hand corner, click the button labeled Set Inst Range and follow the
prompts (that appear on the button), ie hit the lowest instrument key followed by the highest instrument key. If you
do this correctly, the display box beneath the button will show the keyboard range that you have set. These values
will also be broadcast to the remaining scripts in the suite which should now also show the same values for Low Key
and High Key. The easiest way to enter this range data is to use the K2 keyboard display. After clicking Set Inst
Range, simply click the lowest ‘blue’ note followed by the highest ‘blue’ note on the K2 keyboard display. Once
you have set the correct instrument range, SIPS will pass any notes above or below this range without any
processing and thus will not interfere with the normal operation of key switches and such.

Assigning MIDI Controllers
Member scripts of SIPS allow many of their parameters to be controlled in real time via MIDI CCs. When

a panel parameter can be controlled by a CC, there will be an associated assignment-button nearby (usually in the
bottom row, just underneath the associated panel control). When a CC is assigned to control a parameter, the
assignment-button will be lit and will display the parameter name along with the CC# assigned to control it. For
example, when CC#21 is assigned to control XTime, the lit button will display ‘XTime CC# = 21’.When no CC is
assigned, the button will be dark and will indicate that MIDI control is ‘OFF’ (ie ‘XTime CC -OFF-’).

To change a CC assignment, double-click the button to open a drop-down list of MIDI CCs. Scroll through
the menu to find the CC you want and click on it. This will close the menu and re-display the assignment-button (with
your new CC assignment shown). CAUTION: When the instrument editor ’wrench’ is open (ie not in
performance mode), the KSP handles I/O rather sluggishly (especially if the script editor’s text window is
open). So instead of double-clicking, you may need to space the pair of clicks a little in time. Actually, the
1st click brings up a drop-down button labeled ‘- CC Menu -’ and the 2nd click opens the menu. The drop-down
menu displays the MIDI CC numbers from 1 to 119, along with a short description of their ‘customary function’ as
assigned by the MMA. You are at liberty to assign any of these CCs, regardless of their ‘customary’ usage, but it is
your responsibility to be sure there is no conflict of such assignments within your system.

To assign a CC number, simply click on that menu selection. Alternatively, if you want to assign some
physical controller on your keyboard but aren’t sure what CC# it represents, simply move the slider or knob and
then click on the menu line labeled ‘Last CC Moved’. To de-assign CC control of a parameter, click on the upper
menu line labeled ‘MIDI CC - OFF -.

In addition to the standard CCs from 1 to 119, some SIPS parameters can also be controlled by the Pitch
Wheel. When this is the case, the menu will include a line labeled ‘Pitch Wheel’ near the top of the list. The Pitch
Wheel, PW, is unusual in that it can be moved both down and up from its center position. In general, SIPS may use
the PW in one of two ways. In uni-polar mode , the PW has the same effect when moved upward as it does when
moved downward. In bi-polar mode , the PW has a positive effect when moved upward and a negative effect when
moved downward. Refer to the specific parameter you want to control with the PW for how SIPS uses it.

Add-On Control
SIPS Member scripts often use a special form of MIDI control known as add-on control to provide more

precise adjustment of certain parameters. One example of this for the SLS is the XTime parameter. In addition to
the CC assignment button, there is also an edit box just above it (labeled CC Range). Any CC assigned to XTime
will be used to ‘add-on’ to the XTime value set by the knob. The amount of the add-on of course depends on the
position of the CC itself, but in addition it’s also affected by the setting of CC Range. This edit box displays in
percent and can be set to any value from 10% to 200%. Perhaps a simple example may help to clarify this.

7

Suppose you set the XTime knob to a value of 350ms and the CC Range box to 10%. Now if you assign
CC2 to control XTime, as you swing CC2 from min to max, the value of XTime will swing from 350ms to 385ms.
In other words, the CC will add-on 10% of 350ms when CC2 is at max. If you instead set CC Range to 100%,
CC2 will swing the value of XTime from 350ms to 700ms. Similarly, if CC Range is set to 200%, CC2 would
swing the value of XTime from 350ms to 1050ms. However, since the max setting allowed for XTime is 1000ms,
the add-on (combined with the knob setting) cannot exceed that limit. All MIDI add-on controls work in exactly this
same way. Most add-on controls allow you to assign the Pitch Wheel as a uni-polar control but always refer to the
discussion of the specific panel parameter itself to find out how the Pitch Wheel may be used to control it (ie using
uni-polar or bi-polar mode).

Sometimes it is desireable to have one CC control several parameters (within one or several scripts) but if
this isn’t what you want, be careful that you don’t accidentally make such duplicate assignments. Script members of
SIPS do not check for nor disallow duplicate CC assignments either within an individual script, the suite of scripts,
or with K2 itself. Therefore, it is up to you to assign CCs such that there are no conflicts. CAUTION: Prior
versions of SIPS used to block MIDI CCs from further propagation once assigned to control a SIPS
parameter. To be more flexible, V1.5 no longer blocks assigned CCs from continuing on through the
script chain and thus to K2 itself. Therefore if you are using an instrument that also is configured to use one or
more of the CCs you assign to control SIPS parameters, you will now have to disable those parameters in the
instrument (unless you want them to also be affected when you move the CC). Alternatively, you can choose a
different CC (not used by K2) or, if you have a spare script slot, you can use my CC Blocker Script and set its slider
switches to block any of the assigned CCs from reaching K2.

SIPS Preset System
Each SIPS member script, has a Preset drop-down menu in the upper-left corner of its control panel. This

menu contains a number of Built-In Presets as well as space for you to store up to 20 User Presets of your own
custom design. The preset menu also contains a number of action ‘commands’ which will be discussed as we go
along. The Built-In Presets are usually named for the type of instrument or instrument family that the preset was
designed to be used with. These presets were designed and installed by the developers of SIPS. However, since
there is a good deal of variance from one sample library to another, as well as marked differences in the sound you
may be trying to achieve, you should consider the Built-In Presets merely as ‘starting-point templates’ that you will
want to customize for your particular library and application. Because of this, built-in presets will not generally
contain values for every control-panel parameter. For example, the built-in presets do not contain values for
Instrument Range, assigned MIDI controllers, etc. Rather, built-in presets contain a general subset of the control
panel parameters that are referred to as the ‘Key’ parameters (see page 13). The remaining panel parameters are
referred to as the ‘Extended’ parameters.

To recall a Built-In Preset, just click on the Preset Menu drop-down button and then click on the desired
Preset Name in the menu. The menu will then close and the Preset’s Name will appear on the button. The Key
parameter values for the selected preset will instantly be copied to the control panel. The extended panel
parameters however will be left unchanged. Once you recall a preset, you can tweak the values and/or add MIDI
control, etc to obtain the desired effect. If your customized panel is intended to be used only with one particular
instrument, you can simply re-save the instrument. The scripts, along with the customized panel, will then be saved
with it. The next time you load the instrument, it will be recalled just as you left it (including the Extended
parameters). However, if you then recall another preset, your customized panel will be lost and can be restored only
by reloading the re-saved instrument.

User Presets
If you develop one or more customized presets or you would like to keep the control panel settings for

several instruments together in one place, you can save your control-panel settings as User Presets. To save a
User Preset, first set the control panel the way you want it and then open the Preset Menu and click on the –
Save As – command. You’ll find this command between the Built-In and User Preset lists. After clicking on
Save As, the menu will close and the button will read - Save As -. Now, open the menu again and click on one of
the user preset locations (initially named My Preset #1, My Preset #2, etc). When you do this, the menu will close
again with the user preset name on the button. The panel settings are now stored in the User Preset and this preset
can be recalled just like any of the Built-In Presets. However, before you end your K2 session, you must re-save
the script first, either as a .nkp file or with the instrument as a .nki. file. If you don’t resave the script, your new
User Preset will not be there the next time you load the script.

While User Presets can be recalled to the control panel just like any of the built-in presets, there is one
notable difference. Starting with V110 of SIPS, User Presets store all the panel parameters (including the
extended parameters) whereas the built-in presets store only the key parameters. Thus, as already stated, when
you recall a built-in preset, the extended panel parameters are unaffected and retain whatever values they were
set to last. However, when you recall a User Preset (that you have saved in V110 or higher), the extended panel
parameters are affected (they will be set to the values they had when the preset was saved).

There are several things you should note about the Save As operation. First, the Save As command is only
active until you select the following User Preset (the save destination). If you want to save another preset you will
have to click the Save As command again. Second, if the User Preset slot you save to already has a preset
(previously saved there), it will be overwritten and replaced by the new preset. Finally, if you click Save As and
then change your mind, simply click on any Built-In Preset (or any other menu command) to cancel the pending
Save As. As originally supplied, all the User Presets are ‘empty’. If you attempt to recall a User Preset that’s
empty, the control panel will remain unchanged and K2’s status line will read ‘Preset Empty’.

Naming User Presets
Starting with V110 of SIPS, you can rename any User Preset (even an empty one). To rename a User

Preset, open the Preset Menu and click on the ‘Rename’ command (located just after all the User Presets. This
will open the Name Edit Panel (as shown below) in the lower right-hand corner of the main control panel. .

8

1

2 34

5

6

7

8

Name Edit Panel

When renaming a preset, the new name is entered in the Name Edit Window (1) character by character as
selected by the Alpha Knob (2). As the Alpha Knob is rotated (by dragging up and down over it), you can choose
one of 42 chars spread over 4 zones. The selected character is always displayed in the knob’s Data Window (3)
while the Active Zone (4) is displayed just above the Data Window.

9

Starting from minimum (full CCW position), the four zones are: Space, Alphabet, Digits, and Symbol Set.
The Space Zone only has one character (the blank character). The Alphabet Zone contains the letters A - Z. The
Digits Zone contains the numerals 0 - 9 and the Symbol Set Zone currently contains the five symbols # < > + -.
It’s very easy to find the desired character by dragging rapidly at first while watching the Active Zone display until
you get to the appropriate zone. Then slow your dragging speed as you approach the desired character in the data
window. When you are very near you can hold down the Shift key as you drag for more precision and it will be easy
to ‘zero in’ on the desired character. With just a little practice, you can easily get to any desired character quickly.

When you have selected the first character that you want to enter, click on the Enter Char (5) button and
the selected character will be entered into the Name Edit Window (1) and the blinking cursor will move to the right;
ready for you to select and enter the next character.

When selecting an alphabetic character, the Data Window (3) always displays the upper case form
(because lower case letters are less readable). However, if the Lower Case (6) button is active, when you click
Enter Char (5), the corresponding lower-case character will be entered. This is emphasized by the zone display (4)
of ‘a - z’ when the Lower Case (6) button is active (instead of ‘A - Z’ when the Lower Case button is inactive).

If you change your mind about a character you have entered (or you have used the wrong case), you can
click on the Backspace (7) button to delete the character to the left of the cursor so you can re-enter it. You can
also use multiple presses of the Backspace button and each click will delete another character until you reach the
left margin of the name-entry field. If you want to delete the entire name string that you have entered and start over,
you can simply click the Erase All Chars (8) button.

You will most often want to start your name with an upper case letter and then continue with lower-case
letters after that. Therefore, when you first open the Name Edit Panel (or whenever you Backspace to the left
margin), the Lower Case button will automatically be deactivated and after you enter the first character, the
Lower Case button will automatically be activated for you. If this turns out to not be the correct choice for your
situation, you can simply override it by manually clicking the Lower Case button to set it the way you want it.

When you have entered all the characters of your new name, simply open the Preset Menu and click on the
User Preset name you want to replace. Unfortunately, your new name will not actually appear in the menu
immediately because K2 will not allow a script to update a menu entry anywhere but in the initialization
callback, or ICB. The easiest way to force the ICB to run without having to save and reload the script, is to open
the KSP text editor and click the ‘Apply’ button. Once this is done, you will see your new preset name in the Preset
Menu. However, before you end your K2 session, you will still have to resave the script (either as a .nkp or with
the instrument as a .nki file). Otherwise, the next time you load the script your new names (as well as any other
changes you make) will be lost. If you are going to rename several presets, you need not hit ‘Apply’ nor resave the
script until you have made all the changes (unless you need to see the changes right away in the Preset Menu).

Updating Your Custom Presets to V1.5
You may have saved one or more .nkp files with custom User Presets that you spent a fair amount of time

developing. Or, you may have saved one or more Instruments with customized control panel settings and/or a set of
custom User Presets. Thus, when you update to V1.5, you’ll most likely want to transfer all your custom presets
and control panel settings from your prior version of SIPS (preferably without having to painstakenly write down all
the settings on paper and then re-enter them all over again into the new version). .nki and .nkp files with custom
presets can easily be updated to the current version of SIPS by using the Auto-Import feature built into SIPS.
Auto-Import will allow you to transfer all your custom control panels and User Presets from any prior version of
SIPS (including V105, V1051, and V110) with a minimum of effort (amounting to little more than loading and then
resaving each .nkp or .nki once you get the ‘hang of it’).

10

Using the new Auto-Import feature requires that you know how to place a copy of the V1.5, K2-Ready
source code into your computer’s clipboard. If you are unfamiliar with how to perform such operations, before
proceding with this discussion, you should carefully read the entire section titled Installing a 3rd Party Script
starting on page 34 (paying special attention to Placing the K2-Ready Source in the Clipboard on page 36).

In general there are two kinds of files that you will want to upgrade, .nkp files and .nki files. .nkp files
contain only a single script (either the SLS or the SVS). .nkp files will have a control panel with a full set of
parameters (key and extended) and possibly a set of up to 20 User Presets. On the other hand, .nki files contain
both an instrument, and possibly both the SLS and the SVS that were saved with the instrument. For such .nki files,
both the SLS and SVS will have a full control panel saved with them and in addition the scripts may also contain up
to 20 User Presets each. For V105 (and V1051), User Presets contained only key parameters (just like the
built-in presets). But, starting with V110 (which of course includes V1.5), User Presets contain the full set of
parameters (both key and extended).

To upgrade an earlier version of a .nkp file for the SLS, proceed as follows. Place a copy of the V1.5
K2-Source code for the SLS into the clipboard (or have it standing-by in Note Pad or the NL Editor). Launch K2
and load some suitable instrument. Then open the Script Editor and use the Script button to load the .nkp file you
want to upgrade. Next, open the KSP Editor’s text window to expose the source code for the old version of the
SLS. Now, with a copy of the V1.5 source in the clipboard, click on the KSP text window (to give it the focus if
need be) and then hit ctl-A, ctl-V. This will ‘replace’ the old source code with the V1.5 source code from the
clipboard. Now click the ‘Apply’ button and the V1.5 control panel should replace the old version’s panel. Next,
name the script by double-clicking the title box and typing the desired name followed by the enter key. You can now
close the text window and save the updated script as a .nkp (with a different file name if you wish to preserve the
earlier version). The new .nkp is now updated to V1.5 but it also contains all the control panel settings and User
Presets from the old .nkp. In the same way, you can update any .nkp file for the SVS except that you must load
the clipboard with the K2-Source code for V1.5 of the SVS (instead of V1.5 of the SLS).

The process for updating your .nki files is very similar to updating a .nkp file except that it may involve both
a SLS and a SVS update. Therefore, you will need to arrange to alternately place the source for the SLS and the
SVS into the clipboard during the update procedure. This is fairly easy to do since recent versions of the NL Editor
allow loading multiple source files. So, simply load the main source files (for V1.5 of the SLS and SVS) into the NL
Editor and when you need the SLS in the clipboard, just click the SLS file tab and hit F5. Similarly, when you need
the SVS in the clipboard, click the SVS file tab and hit F5.

 Now, launch K2 and load the .nki file you want to update, open the script editor, select the SLS script tab
and then open the text edit window to expose the source code for the old version of the SLS. Next, with the V1.5
source code for the SLS in the clipboard use ctl-A, ctl-V to paste the V1.5 source into the KSP Editor (‘replacing’
the old SLS source). Now, click the ‘Apply’ button to update the SLS. Next, place the V1.5 SVS source code in
the clipboard and then select the SVS script tab in the KSP (in order to expose the old source code for the SVS).
Then, use ctl-A, ctl-V to ‘replace’ the old source with the V1.5 source for the SVS. Now, click on the ‘Apply’
button to update the SVS. You can now rename the two updated script slots by double-clicking their title boxes.

You can now resave the instrument .nki file (using a new name if you want to preserve the original version
of the .nki). The new .nki will now contain V1.5 scripts with the control panel settings and User Presets of the old
instrument file. If you have a lot of Instruments to update, instead of updating as just outlined, you may want to first
load a bunch of instruments into the K2 rack and then go through them one by one in a 2-pass operation. First put
V1.5 of the SLS in the clipboard and update only the SLS script for each instrument. This way all the loaded
instruments can be ‘half-updated’ without changing the contents of the clipboard. After all the instruments have the
SLS update, load V1.5 of the SVS into the clipboard and then redo each instrument, this time just updating the SVS
script. Finally, resave all the (now fully updated) instruments.

11

Auto-Import Problems
When you ‘replace’ the source code for a SIPS member script and then hit ‘Apply’, the code block that

executes tries to verify that what you are trying to do is valid. To do this, the Auto-Import algorithm checks certain
attributes of the ‘old’ source code and the ‘new’ source code. These attributes are then compared to determine if
the import will be valid. Valid upgrades can be made from any earlier version of SIPS (such as V105, V1051, or
V110), however you must also be sure that the old and new scripts belong to the same member. In other words you
can’t import from the SVS to the SLS or vice versa. If V1.5 is the importing script and the ‘old’ script is any older
or newer SIPS script, all illegal combinations are detectable and will be reported by V1.5 (an error message box
appears and indicates that an Auto-Import error has occured.

If you try to downgrade from V1.5 or V110 to V105 the error won’t be reported because Auto-Import
wasn’t implemented until V110 (so V105 doesn’t perform it). This downgrade operation should be harmless, but it
doesn’t accomplish anything either. In general, the Auto-Import feature is only intended for upward mobility of user
presets, not downward. For example if the next version of SIPS turns out to be V200, it will be possible to upgrade
V1.5 to V200 but not the other way.

Now if you try to update to V1.5 from some other script which is not part of the SIPS family, the problem
may or may not be detected and, the outcome may or may not be OK. To understand this situation it will be
helpful if you read page 35 on Source Files and the new K2.1 double-buffering of persistent variables. Generally, if
the ‘old’ script has no persistent variables named the same as V1.5 of SIPS, trying to update should be relatively
harmless. However, if one or more persistent variables in the ‘old’ script should happen to have the same name as
some of the persistent variables in SIPS, trouble may ensue. If the name match happens to occur in certain key
areas, the Auto-Import logic may detect it and warn you but chances are that such will not be the case.

Therefore, to be on the safe side, whenever you are updating to V1.5 of the SLS or SVS, be absolutely sure
that the ‘old’ source file is a SIPS file. If you do this, the results will either be harmless or you will be warned with a
suitable error message. On the other hand, if you want to install V1.5 of SIPS from a source file and you don’t want
to transfer your custom presets, use the ‘fresh-install’ procedure outlined on page 35 (ie before pasting the V1.5
source into the KSP editor, simply load the Empty preset). This will clear K2’s persistence buffers and you will get
a ‘fresh’ install (whereby all settings will be initialized to their default values). A fresh install like this is the same as
loading the original .nkp file for V1.5 (the one included with the original SIPS package download).

Warning About Compact Compiler Output
Nils Liberg’s KScript Editor has a developer option called ‘Compact Compiler Output’ that reduces the

overall size of the K2-Ready Source code. However, when compiling SIPS source code, DO NOT use the
Compact Compiler mode unless you are installing SIPS as a ‘fresh install’ (ie you have no User Presets from prior
versions that you wish to carry forward). If you use Compact mode, Auto Import will not be able to successfully
transfer your presets from prior versions of SIPS.

In versions of the NL Editor prior to V1.22.4, Compact mode did not always result in identifiers being
compressed to the same string of characters and this could mess up K2’s persistent variable scheme (which is
used for preset migration). Starting with V1.22.4 of the NL Editor, Nils has standardized his symbol compaction
algorithm with the intent of not changing it in future releases of the editor. Therefore, if you are starting a ‘fresh’
install of SIPS, you might want to consider using Compact mode. However, if you do, you will have to use Compact
mode for all future updates of SIPS and if the current compaction function is ever changed, you may not be able to
migrate your presets forward to future versions of SIPS. Note also that the K2-Source code of the .nkp files that
are supplied with SIPS are not in Compact mode so if you want to use Compact mode you must ‘fresh’ install the
NL Source code (see page 35) rather than starting with the .nkp files.

12

Extending User Presets
User Presets in V105 only contain the key parameters and do not include the extended parameters. For

V110 on up however, whenever you save a User Preset, all panel parameters are saved (including the extended
parameters). So, after an Auto-Import from V105, User Presets do not contain the extended parmeters (since
they didn’t exist in V105) and until you resave them with V1.5, these extended parameters are set to a special
‘token’ value to indicate that they are undefined. Thus when you recall a User Preset imported from V105, the
extended parameters of the control panel are left unchanged (just as they would have been in V105).

However, after updating to V1.5 you can update your imported User Presets (if you wish) to include the
extended parameters. To do this, all you have to do is the following. First, recall an imported User Preset to the
control panel. Then, set the extended parameters on the control panel to the desired values and finally, use the
‘Save As’ command to resave the User Preset. The next time you recall this User Preset, all panel parameters
will be recalled as desired.

Recall of Instrument Range
Included in the extended parameters of a panel is the Instrument Range, IR. If you recall an SVS User

Preset that has a different IR from the current SLS, the IRs could become ‘out of step’. This kind of situation is
rare, but if it occurs, all you have to do is reset the IR from the SLS. You can also avoid this situation entirely if you
always recall the SVS preset first and then recall the mating SLS preset. When an SLS User Preset is recalled, the
IR is broadcast to the remaining SIPS member scripts so they will all be brought into step with the SLS.

Import/Export of User Presets
When V105 of SIPS was written, it was before double-buffering of persistent variables had been added to

K2. Therefore an Import/Export, I/E feature was added to V105 of SIPS to assist in the process of transferring
presets when updating. Since this function is now provided by the Auto-Import feature added to SIPS (starting with
V110), we no longer need the I/E function for its original purpose. However, V1.5 retains a slimmed-down version
of the I/E function because it facilitates the creation of User Preset Libraries by allowing you to re-group and/or
re-arrange panel settings from several different .nkp or .nki files. Since User Presets now ‘remember’ all the
panel parameters and can be named, this ability could prove to be very useful.

For V110 and up, the I/E function is intended to be used only to transfer User Presets between scripts of
the same exact kind (both member type and preset format class). Moreover, the Export command only transfers
one User Preset at a time. There is no longer any bulk-export of all User Presets (as there was in V105) because
that is most easily done via the new Auto-Import feature. To transfer User Presets (one at a time) from one script
to another, position the receiving script in the next slot to the right of the sending script. Open the Preset Menu of
the receiving script and click on the ‘Import’ command. The Import command is usually the last menu item. The
menu will close and the button will display Import indicating that the script is ready to receive User Presets.

Next, open the Preset Menu of the sending script and click on the Export command. The menu will close
and the button will display Export. Now, open the menu again and click on the User Preset you want to export. If
the operation is successful, the Importing script will display the message ‘Import Done’ in the K2 status area. The
exported User Preset is now available in the receiving script (including the preset’s name) but you will have to
resave the receiving script if you want to retain the new preset the next time you load the script. Also, just as when
you are renaming a preset, the imported preset’s name will not appear in the Preset Menu until you either click on
the ‘Apply’ button or you save and reload the script (see page 9). After you have exported a preset, the sending
script will remain in the Export mode in case you want to send another preset (the receiving script will also remain
in the Import mode). To send another preset, simply open the Preset Menu again and click on the next User
Preset that you want to send.

13

The current version of the SLS contains a total of 17 built-in presets and the SVS contains 10. The
‘fresh-install’ default presets are Clarinet 1 for the SLS and Basic Setup for the SVS. Basic Setup makes a good
starting-point for constructing new Vibrato presets. The remaining Built-In presets were developed by Theo
Krueger, Andrew Keresztes, and Martin Nadeau. Their presets can be identified by their initials in the right
margin of each preset in the menu. Thus, the legend TK#, AK#, and MN# are used for Theo’s, Andrew’s, and
Martin’s presets, respectively, with the numbers after their initials used to tie the presets to their corresponding mp3
demos. Each demo is prefixed with a corresponding tag.

Not all of the control panel parameters are stored with the Built-In presets. SLS Built-In presets only
contain the following 10 parameters: XTime, AtkFade , NodeVol, BTime , Slope , Bend, RlsFade , RlsMode ,
Offset, and OfstMode . Whereas SVS built-in presets contain the following 16 parameters: Depth, Width, Speed,
Pk-Dwell, Width-Var, Depth-Var, Speed-Drift, Speed-Per, Wave-Drift, Wave-Per, Onset, Rise, Decay,
Sustain, Env-Menu,.and Vib-Amt. This doesn’t mean that the remaining parameters (the extended parameters)
are unimportant, just that they tend to be more Instrument-specific and/or dependent on individual preferences. For
this reason, Extended parameters ARE stored with your custom User Presets.

Again, it must be emphasized that the Built-In presets should only be viewed as a reasonable starting point
for several reasons. First of all, many of the presets were developed with a certain amount of generality in mind. As
an example, Theo describes his presets this way: “These presets are a little bit ‘contained’, meaning that I
didn’t overuse the bending or try to make them overly-expressive. I did that considering the various
libraries and trying to make settings that would work well for most. Despite that, I hope they serve as a
good guideline for people to adjust them to any library”. Theo’s preset demos (mp3s) were basically done
using just the raw preset (without CC riding) so that you can hear what the basic preset itself sounds like. However,
to get the most from SIPS, you will want to customize these presets on an instrument by instrument basis and, you
will want to add MIDI control to enable you to add your own personal touch of realism to the sound. It’s not
practical to include MIDI CC assignments with the built-in presets because everyone has a different set of favorites
and will tend to use CCs in a somewhat different way. Furthermore, just assigning CCs doesn’t ‘play them’ for you.
Yet, assigning CCs and ‘riding them’ during the performance is almost essential to producing a really
convincing effect.

When you have finished sending presets you can end the Export mode by selecting any built in preset (or by
clicking on any other ‘command’). Note that imported presets are postioned the same as in the sending script (ie if
you export the 5th User Preset, it will be imported as the 5th User Preset). Also note that if you try to export an
empty preset, nothing will be sent and the K2 status area will display the message ‘Preset Empty’. Or, if you try
to do an I/E operation between two non-compatible scripts, the data will not be transferred and the V1.5 receiving
script will display the message ‘Preset Format Mismatch’ in the K2 status area.

If you want to transfer a control panel, first save the panel to one of the User Presets using the ‘Save As’
command, then Export that User Preset. With this general idea, you can use the I/E facility to load up to 20
instruments (one by one) and ‘collect’ their control panels as User Presets into one single .nkp file. In addition,
while the Export command always transfers a User Preset to the same location in the import script as it was in the
export script, you can rearrange the order in the new script (at least with some degree of lattitude) because, until
the importing script is completely filled, you can always move a preset by first recalling it to the panel and then using
Save As to write it to another user location.

14

Introduction
Simulating a legato effect with a Script is all about connecting notes, or more specifically, controlling note

transistions. When you play two overlapping notes, the Legato Script must ‘retire’ the old note and ‘establish’ the
new note. But the old note can’t just be ended and the new note started or it won’t sound like legato playing. For a
brief period of time, called the ‘transistion’ period, components of both the old and the new notes are present.

The two major functions peformed by a Legato Script are Crossfading and Bending. The Crossfading
function controls the relative volume of the old and new notes while the Bending function warps the pitches of the
two notes during the transistion period. The objective is to do all this in such a way that the transistion from the old
to the new note is done smoothly and sounds, for all practical purposes, just as it would when done with a real
instrument by a real player. This turns out to be rather ‘a tall order’ because there are many conflicting requirements
and the current KSP tool kit is rather limited. However, the SIPS Legato Script, when properly set up is capable
of providing some extremely realistic and convincing legato sounds. Of course to properly set up the SLS, it is
important that you understand what all of the knobs and such do. While a number of presets are provided, these
should be viewed only as starting points for your further customization on an instrument by instrument basis. This is
especially important if you are expecting the SLS to work with a wide variety and quality of sampled instruments.

Playing Legato
To play a phrase legato, the SLS requires that all the ‘inside’ notes of the phrase overlap. The first note of a

new phrase is sensed by the script based on the fact that no other notes are still sounding (ie no keys are still held
down and the sustain pedal is off). The SLS plays the first note of a phrase normally (that is with its normal attack).
If this first note ends before another note starts, the script will interpret the 2nd note as the start of another new
phrase. Such notes are not affected in any way by the script. However, if the first note is still sounding when the 2nd
note starts, the notes are considered overlapping and the Legato Effect will be generated. Similarly with the 2nd
and 3rd notes, the 4th and 5th notes and so on. When the last note played ends before another note is played, the
script considers it to be the ‘end of the current phrase’. Unless you are using the special ‘Key-Lift’ release mode,
the amount of time overlap is not important to the script.

If you use the built-in presets as is, along with a ‘set it and forget it approach’, you surely won’t get the most
from SIPS. While the effect can still be surprisingly good, don’t expect miracles. On the other hand, if you are willing
to add some MIDI controls and put some effort into using them musically, the results can be extremely
convincing. The artful use of CCs can be likened to viewing SIPS as you would a musical instrument. If you want
a quality, musical sound, don’t expect the scripts to ‘play themselves’. Andrew did his preset demos (mp3s) with
CC riding added and I think you will find his demos are quite convincing. Here’s what Andrew said about how he
used SIPS to make his demos: “I use SIPS as an instrument.— it rarely stays static. I'm always riding the
CCs. So as time goes on, I'll get better at it. Plus, for strings (for me), it's imperative to have varying gliss
times and amounts”.

Be sure you study the rest of this User’s Guide so that your future knob twiddling can be carried out with
some solid technical knowledge backing it up. You will especially want to read the sections titled ‘Guidelines for
Making Legato Settings’ and ‘Guidelines For Making Vibrato Setttings’. These sections offer a solid recipe
for ‘cooking up’ presets. In addition, I asked Theo and Andrew to write about their experience with SIPS and to
share with us their tips and techniques for creating presets and using SIPS under fire. So, be sure that you read
what these SIPS Pioneers have to say, you’ll find their narratives starting on page 32 of this User’s Guide .

15

Use of the Sustain Pedal
Normally, you tell the script that you want the legato effect for a pair of notes by not releasing the first note’s

key until you have pressed the next note’s key. However, the script produces the legato effect for any pair of notes
that overlap. So if you depress the sustain pedal during the first note, then even if you release the key before striking
the next key, if the sustain pedal is down when the second key hits, the script will ‘see’ the notes as overlapping and
add the legato effect. Unlike prior versions of the SLS, V1.5 processes the sustain pedal with its own logic (K2’s
normal handling of the pedal is disabled). Thus, if you hold the sustain pedal down while playing a phrase, there will
be no excessive ‘buildup’ of polyphony because the SLS fades out the prior note when each new note starts. In fact,
the polyphony would never exceed two if it weren’t for the fact that some instruments have a long release tail.
Because of this, if you play a fast legato passage, polyphony can exceed two for brief periods when multiple note
tails may overlap (but, this will happen whether or not you use the sustain pedal). So, you can optionally play legato
either by overlapping the keys or by using the sustain pedal (whichever is more convenient). However, if your phrase
contains two or more notes in a row that are the same pitch, you can’t actually overlap the keys so for this case, you
will need to use the sustain pedal to legato-connect the notes. Note also, that when using the special Key-Lift
release mode with the sustain pedal, both the key and the pedal must be released to shorten the fade-out note.

Playing Chords
Prior versions of the SLS allowed the playing of chords in Solo and Bypass modes but, there were several

unforseen problems with its implementation that made it awkward to use in actual practice. In V1.5, the
MIDI-controllable SLS Mode Menu function has been completely redesigned to provide a much more musician-
friendly operation.

For V1.5, the Mode Menu choices are Legato Mode , Solo Mode , and SIPS OFF. Of course Legato
Mode is the primary mode of the script. Solo Mode (as in prior versions of SIPS) allows for playing monophonic
lines where each new note played forces the prior note to its release phase (but provides no crossfading or bending
like Legato Mode does). However, unlike prior versions, Solo Mode in V1.5, does not allow playing chords
(with or without the sustain pedal depressed). Rather, the sustain pedal merely insures that the individual notes will
be connected (as it does for the Legato Mode).

However, the SIPS OFF mode completely removes the legato and solo-mode effects of the script and thus
allows normal playing, including the playing of chords if desired. And, since the Mode Menu can be assigned
to a MIDI CC, you can easily switch back and forth between Legato (or Solo) Mode and SIPS OFF in real time
as you play. However, unlike prior versions of the SLS, the transitions and overlaps provided by V1.5 are much
more musical. For example, if you are playing a legato phrase and hold the last note of the phrase as you switch from
Legato Mode to SIPS OFF, subsequent notes will play normally (without the legato or solo-mode effect) but, the
last held note will carry over until released. Similarly, if you play some passage in the SIPS OFF mode and hold the
last chord played as you switch back to Legato Mode , subsequent notes will play legato but the last held notes
from the SIPS OFF mode will continue to sound until released.

For lack of a better name, we might call this feature ‘Musical Carryover’. Basically it simply means that
the last note or chord sounding in the prior mode can be overlapped into the next mode. This can be done either by
holding the key (or keys) down during the mode change, or by using the sustain pedal to accomplish the same thing.
Hopefully, the new logic used to implement this feature will provide for a musically-satisfying and a more intuitive
behaviour for real-time mode changes.

16

(1) Preset Selector drop-down menu. Selecting an Instrument or Instrument Class from this menu will
set certain key parameters to a good starting point for you to further customize by ear. For a list
of key parameters recalled by the built-in SLS presets, see page 13. For complete information on
User Presets and other features of the SIPS Preset System, see page 8.

(2) XTime knob. Sets the total crossfade time for note transitions in milli-seconds. If RlsFade (7)
is set to less than 100%, XTime is still the time for the fade-in of the new note but the fade-out
time of the old note will be less (specifically RlsFade * XTime)..

(3) Double-click this assignment-button to select a MIDI CC for add-on control of XTime.
NOTE: If the Pitch Wheel is assigned, it will be used in the uni-polar mode (see page 6).

(4) CC Range edit box. Sets the percentage of XTime that can be added by an assigned CC (3).

(5) AtkFade knob. Sets the percentage of XTime that the first segment of a 2-segment fade-in
contour uses to rise to NodeVol. NOTE: If AtkFade is set to 100%, NodeVol (6) is ignored
and a single-segment, linear fade-in will be used over the full XTime period.

(6) NodeVol knob. Sets the percentage of Vmax attained by the first segment of the fade-in contour.

(7) RlsFade knob. When the release-mode menu (8) is set to ‘Knob Setting’, this knob sets the
fraction of XTime for the pre-release fade-out of the prior note. If RlsFade is set to 100%, the
prior note fades-out over the full XTime interval using a single segment contour.

(8) Release-Mode Menu drop-down button. When Knob Setting is selected, the RlsFade
knob (7) setting determines the fraction of XTime used for pre-release fade-out. When
Key-Lift is selected, the RlsFade knob is ignored and the pre-release fade-out time is
controlled by your keyboard legato note overlap time (see page 21).

(9) Offset-Mode Menu drop-down button. Use to select how the sample-start offset time
(for ‘inside’ notes) is determined: ‘Auto Mode 1 uses time since the start of the prior note.
‘Auto Mode 2’ uses time since the start of the current legato phrase. ‘Manual Mode’ uses the
fixed time set with the Offset knob. And, finally, ‘Manual +Rand’ uses a randomly varying offset
with the knob setting as the minimum. The knob offset add-on will be a randomly selected multiple
of 50ms over the range from 0 to 400ms but the same offset will never be used twice in a row.

The Legato Script Control Panel

3

2

107 8

6

4 16 17

1811

13

5

12

14 15

9

19

20

21

1

17

(10) Offset knob. Sets a fixed sample-start offset time when (9) is set to ‘Manual Mode’ or sets the
minimum, base offset time when (9) is set to ‘Manual +Rand’ mode. The Offset Knob’s
setting is ignored when (9) is set to Auto Mode 1 or Auto Mode 2.

(11) BTime knob. Sets the amount of time (starting when XTime begins) over which bending occurs.

(12) CC Range edit box. Sets the percentage of BTime that can be added by an assigned CC (13).

(13) Double-click this assignment-button to select a MIDI CC for add-on control of BTime .
NOTE: If the Pitch Wheel is assigned, it will be used in the uni-polar mode (see page 6).

(14) Bend edit box. Sets the amount of bend (in cents) when the played interval is a minor 2nd.

(15) Slope knob. Sets the factor by which Bend increases for a played interval of one-octave.

(16) CC Range edit box. Sets the percentage of Bend that can be added by an assigned CC (17).

(17) Double-click this assignment-button to select a MIDI CC for add-on control of Bend.
NOTE: If the Pitch Wheel is assigned, it will be used in the uni-polar mode (see page 6).

(18) Set Inst. Range button. Accepts the next two notes played on a MIDI keyboard (or on the
K2 keyboard) as the lowest and highest keys for the instrument. These keys are then displayed
in (19). Note: Setting the Instrument Range for the SLS will also set the Instrument Range for
all the following SIPS member scripts.

(19) Instrument Range Box. Displays the Low/High Key of the range set for the Instrument.

(20) SLS Mode Menu drop-down button. When Legato Mode is selected, the legato effect is
enabled. When Solo Mode is selected, no legato crossfading or bending is performed, but
each overlapping note played will terminate the prior note. When SIPS OFF is selected,
the script has no effect on the MIDI stream other than to provide sustain pedal control logic
and ‘musical carryover’ (see page 15). This mode can be used to play chords if desired
(albeit without the legato effect).

(21) Mode CC edit box. Allows a MIDI CC to be assigned to select the SLS Mode . When a
valid CC is assigned, the 3 modes are selected by the CC’s value as follows:
64 to 127 Legato Mode
1 to 63 Solo Mode
0 SIPS OFF Note: This mode also disables the SVS

3

2

107 8

6

4 16 17

1811

13

5

12

14 15

9

19

20

21

1

18

This section of the User’s Guide will focus on the Crossfade Function and its parameters. The Bend
Function and its parameters will be discussed in the next section. The purpose of Crossfading is to gradually get rid
of the old note while simultaneously welcoming the new note. When this script was written, the change_vol() function
was too noisey to be used for crossfading so the SLS was designed to use the fade functions with a novel,
2-segment shaping. Since this resulted in being so musically satisfying, there is little incentive to rewrite this code just
for the sake of using the now-improved change_vol() function.

The simplest form of a crossfade is depicted in Figure-1. The old note is faded out over the period XTime
and the new note is faded in over the same period of time. Now, before proceding, it should be pointed out that the
precise volume versus time relationship produced by the KSP fade functions has not been disclosed. By ear they
sound fairly smooth and thus probably follow some log/linear relationship. But for convenience of discussion and
graphical depiction, we’ll refer to the KSP fade in/out curves as linear and thus show them graphically as straight
lines.

In Figure-1, the solid Red Line depicts the old note fading out from its full level, Vmax, to silence. The
solid Green Line depicts the new note fading in from silence to Vmax. This type of linear crossfade, when done
with the KSP fade functions, provides a fairly decent effect and has been used as the basis of several simple legato
scripts. Naturally this ‘bare-bones’ form of crossfade works better with some kinds of instruments than it does with
others.

The next logical improvement in getting to a more convincing legato transistion is to remove the attack
transient of the new note. With the KSP this can be done by starting the new note’s playback farther into the sample.
The SLS provides two automatic and two manual modes for determining the amount of sample-start offset. The
Auto Modes produce an offset equal to the time since the start of the prior note or the time since the start of the
current phrase. In the Manual Modes, the offset is determined by the setting of the Offset Knob alone or together
with a randomly chosen add-on. These four modes are selected with the drop-down list button beneath the Offset
Knob. Note that the sample-start offset feature only works when K2 is in Sampler Mode and not in DFD
mode. So if the instrument you are using requires sample offset to sound right, you will need to operate that
instrument’s groups in Sampler mode . Conversely, if you must operate the instrument in DFD mode, the crossfade
alone will have to try to cover up the attack transient (since the sample-start offset settings will have no effect).

For most instruments it may be difficult to get a smooth legato transition without removing the attack portion
of the ‘inside’ samples. So, even if you must eventually operate an instrument in K2’s DFD mode, you may want to
consider the following alternative. While you are designing your preset, operate the instrument in K2’s Sampler
mode and use the SLS Offset Knob (Manual Mode setting) to try to find a fixed sample start offset that produces a
nice smooth legato sound. You can then note the time setting you are using for the Offset knob and write it down
somewhere. Then, go to work editing your instrument as follows. Create a duplicate set of instrument samples and
edit these samples in your favorite sample editor by removing the sample starts for the time interval you just wrote
down. Put the edited samples in a new group(s) and arrange it so you can select either the normal group(s) or the
edited group(s) when you play (for example by using a keyswitch). Then, you should be able to run K2 in the DFD
mode (where it will now ignore the Offset Knob setting). However, if you now manually switch to the edited
group(s) while you play ‘inside notes’, the fixed sample start offset (that you had when running in Sampler mode) will
be provided by the edited samples instead. Since these samples have a fixed amount of time removed from their
beginning, the effect ought to sound about the same now in DFD mode as it did in Sampler mode.

19

Figure 1

Vmax

XTime is total crossfade time and Vmax is normal sample volume
Red - Prior Note fading out Green - New Note fading in

XTime0

Equal-Time
‘Linear’ Crossfade

Different instruments require different XTime settings. For example, something on the order of 60ms works
out well for a Clarinet but strings usually require a much longer crossfade time. For example, a Cello will typically
need XTime settings from 300 to 600ms. For short XTime settings, the simple linear crossfade of Figure-1 can be
made to work quite well. However, as XTime gets longer, several undesireable things begin to happen. In order to
avoid a ‘chorusing-like’ effect, as well as a general mudiness in the transistion sound, it is necessary to shorten the
fade-out time relative to the fade-in time. So if the total fade-in time is always considered to be XTime, then the
fade-out time must often be reduced to some fraction of XTime.

One way to do this is to provide an adjustment that sets the ratio of fade-out time to XTime. With such a
knob set to say 25%, the crossfade profile would be as shown in Figure-2. The problem with this scheme is that a
serious dip in volume occurs before the fade-in gets up high enough. But, apart from this volume dip, the legato
transistion itself sounds much better than with the equal-time crossfade of Figure-1 (at least for longer XTime
values).

Another way to shorten the fade-out time is depicted in Figure-3. Here the old note fades out along the
same path as it would in Figure-1 until 25% of XTime elapses. Then, the note is terminated with the note_off()
function. This causes K2 to act as though the key was released which in turn advances the sample playback to the
‘release’ phase of its envelope. Thus, this scheme effectively has a 2-segment fade-out curve which greatly shores
up the volume dip with little or no unfavorable effects. For high XTime settings, this scheme provides a better overall
quality legato transistion, yet greatly reduces the volume dip problem.

1-segment Fade-Out
RlsFade = 100%

1-segment Fade-In
AtkFade =100%

20

XTime0

Vmax

Crossfade
with Faster Fade-Out

Figure 2

XTime0

Vmax

Figure 3

‘Crossfade with Faster
2-Segment Fade-Out

RlsFade

Path for
RlsFade = 100%

2-segment Fade-Out
RlsFade = 25%

1-segment Fade-Out
(Not used by SLS)

21

The reason this scheme is so beneficial is that the volume of the old note stays up where it is needed the most
and yet the note is reduced to silence in a period not much longer than that depicted in Figure-2. The 2-segment
fade-out shown in Figure-3 is the technique used in the SLS. In addition, the SLS provides two different
mechanisms for specifying what percentage of XTime is used for the first segment (the pre-release fade-out time).
The selection is made with the release mode drop-down menu just under the RlsFade Knob. When the Knob
Setting mode is selected, the RlsFade knob sets the fraction of XTime given to the pre-release fade-out time.
For example, if XTime is set for 500ms and RlsFade is set to 25%, then the pre-release fade-out interval will last
for 125ms before the prior note moves on to the envelope’s release phase.

When Key-Lift is selected as the release mode, the RlsFade knob is ignored and instead, the pre-release
fade-out ends when the prior note’s key is released.. The Key-Lift time is governed by your playing style and how
much you typically overlap the notes when playing legato. So, if you hold the prior note longer (ie make the overlap
longer), the pre-release fade will be longer and if you make the overlap shorter, the pre-release fade will be
shorter. Thus, you can vary the pre-release in ‘real time’ as you play (by varying the length of ‘overlap’ that you
use). Depending on your keyboard skills and/or your playing style, you might find this mode to be fairly comfortable
to use and it may give you some additional measure of control over the sound.

Now, while the fade-out depicted in Figure 3 has two segments, unlike the first segment, the second
segment is not directly under control of the script. The time of the second segment is governed by the release phase
of the sample itself which in turn may be shortened by the release phase of its envelope. However, in spite of the fact
that the script cannot directly set this release time period, the scheme of Figure 3 for controlling the fade-out still
works out to be quite musical in most situations. One reason this is so is because instruments that require a shorter
total fade-out time than the fade-in time (ie XTime) are those instruments that have a slower attack time and a
correspondingly slower release time. For such instruments, the natural release time is usually such that you can find a
pre-release time (RlsFade*XTime) that dovetails nicely with it.

So, for faster attack instruments (which usually use rather short XTime settings), a RlsFade setting near
100% (as depicted in Figure 1) usually works out quite well. And, for many of the slower attack instruments
(requiring larger XTime settings), all that is needed is to reduce the RlsFade setting as depicted in Figure 3.
However, for some instruments that need higher XTime settings, the scheme depicted in Figure-3 has a few
shortcomings. During the legato transition, there may be a small (but undesireable) volume dip that occurs.
Moreover, when XTime and RlsFade are set for the smoothest and best sounding legato effect, sometimes the
response at high XTime values becomes kind of sluggish for playing faster passages. To overcome these problems,
we need to get the new note up faster and yet not materially reduce the total fade-in time (to preserve the nice
smooth legato sound). To accomplish this, the SLS provides a 2-segment fade-in that is faster at first and slower
later. This is sort of the inverse of the fade-out curve (together providing something akin to an equal-power
crossfade). Both the 2-segment fade-out (red) and the 2-segment fade-in (green) curves are depicted in Figure-4.

Two adjustment knobs are provided for setting the fade-in contour. The AtkFade knob sets the percentage
of XTime over which the first segment of the fade-in curve rises from silence to where the 2nd segment starts. The
NodeVol knob sets the percentage of Vmax that the first segment of the curve rises to before it changes its slope.
Thus segment-2 of the curve rises from NodeVol*Vmax to Vmax over the remainder of XTime. With these two
knobs a variety of different contours can be set, and with the proper settings, you will usually be able to overcome
the volume dip and also make the script more responsive to faster passages (even at long XTime settings). Note that
if you set AtkFade to 100%, the value of the NodeVol setting is ignored and a single-segment fade-in curve such
as that depicted in Figure-3 is obtained.

22

The SLS also provides for MIDI control of XTime. The assignment-button beneath the XTime knob
allows you to assign a MIDI CC to provide ‘add-on’ control of XTime. The range of the add-on effect for XTime
can be set with the companion edit box named CC Range. For complete details about MIDI add-on control, see
the section titled SIPS MIDI Control in the introductory discussion of SIPS (see page 6).

MIDI Control of the Crossfade Function

It should be mentioned that while these two controls can be set many useful ways, they can also be set in
many nonsensical ways that should be avoided. To clarify this a little, consider the following. When AtkFade is set
to the same value as NodeVol, the 2-segment fade-in contour coalesces effectively into a one-segment fade-in
because segment 1 and segment 2 both have the same slope. For example, if AtkFade and NodeVol are both set
to 50%, the (light blue) fade-in curve of Figure 4 will be the result even though there are two segments. The first
segment will traverse the first 50% of the straight-line and the second segment will traverse the last 50% of the same
straight line . Now if NodeVol is set to a value lower than AtkFade, the contour will dip at the node which is just
the opposite of what you will likely be trying to do with these controls. This sort of situation is depicted by the dark
blue contour shown in Figure 4.

Thus when attempting to correct for side effects of the simple, 1-segment linear fade-in contour, you might
begin by setting both AtkFade and NodeVol to 50%. This will start you out with the same sound as you had when
AtkFade was still at 100% (ie a single-segment linear fade-in). Then, as you begin to tweak these controls, you will
want to move them in such a way that keeps AtkFade less than NodeVol so that you don’t get an inverse contour
like that of the dark-blue curve in Figure 4. Remember that what you are trying to do is to make the segment-1
slope steeper and the segment-2 slope flatter as it approaches Vmax.

0

Figure 4
XTime

Vmax

RlsFadeAtkFade

NodeVol

Crossfade with 2-Segment
Fade-Out and Fade-In

Fade-In Contour with
NodeVol < AtkFade

Fade-In Contour with
AtkFade = NodeVol

Fade-In Contour with
AtkFade < NodeVol

Segm
ent-

1

Segm
ent-

2

23

When musicians play legato passages on real instruments, there is usually a certain amount of pitch bend that
takes place in moving from the prior note to the new note. Just as the prior note smoothly crossfades into the new
note, the prior note’s pitch also starts to bend toward the new note and the new note bends toward its target value
(from the side of the prior note). Thus, if an up interval is played, the old note starts to sharpen as it fades out while
the new note fades-in somewhat flat as it bends toward the desired center value. Conversely, if a down interval is
played, the old note starts to flatten as it fades out while the new note fades in somewhat sharp as it bends toward
the desired center value.

The amount of bend depends on the instrument class but, for a given instrument, the amount of bend usually
increases as the played interval widens. The SIPS Legato Script allows you to set the amount of bend for a played
interval of a minor 2nd (ie one semitone) and also lets you specify the linear rate at which the bend will increase as
the played interval increases. Figure 5 illustrates the relationship between bend amount and the played interval.

In Figure 5, the left side annotation identifies the amount of bend for a played interval of one semitone as
Bend1 and the amount of bend for a played interval of one octave as Bend12. The right-hand side annotation
shows these same two bend levels related to the SLS parameters of Bend and Slope . The Bend edit box value is
precisely the same as the Bend1 value (ie the amount of bend for a played interval of a minor 2nd). So, you should
set the Bend edit box for the number of cents of bend you desire for a minor 2nd. Then you can set Slope as
follows. Determine how much bend you want for a played interval of one octave (Bend12). Slope should then be
set to Bend12 / Bend. For example, if you want a bend of 20 cents for a minor 2nd, and a bend of 45 cents for an
octave, set Bend = 20 and Slope to 45 / 20 = 2.3. Note that if you want the same amount of bend for any played
interval you can accomplish that by simply setting Slope = 1.0.

Now in addition to setting Bend and Slope , you also need to specify the time interval over which the bend
takes place. The bend always starts when the crossfade starts (ie when XTime begins) and continues for the time
interval set by the BTime knob. Thus the rate of pitch bend is governed by the amount of bend and the time over
which that bend takes place. Usually you will want a BTime setting close to that of XTime but you can set it shorter
or longer as the occasion warrants. Since BTime and XTime can both be assigned to a CC, if you always want
BTime to track with XTime, you could simply assign the same CC to control both.

Figure 5
Pitch bend as a function of the Interval
between a pair of notes played Legato

Bend12

B
en

d
in

 C
en

ts

Bend1

0 1 432 765 1098 11 12 13
Interval in Semitones

Bend

Slope*Bend

24

The SLS provides for MIDI control of both the bend time and bend amount. The assignment-button
below the BTime knob allows you to assign a MIDI CC to provide ‘add-on’ control of BTime . Similarly, the
assignment-button below the Slope and Bend controls allows you to assign a MIDI CC to provide ‘add-on’
control of Bend. The range of the add-on effect for either of these parameters is set with the corresponding edit
boxes named CC Range. For more details about MIDI add-on control, see the section titled SIPS MIDI Control
in the introductory discussion of SIPS (page 6).

MIDI Control of the Bend Function

The remaining issue that needs to be discussed is how the bend is shaped over the BTime interval.
Currently, the SLS uses a simple linear bend contour as depicted for an up-interval in Figure 6. This is by no means
the only way to apply the bend over time but, it does provide a fairly ‘musical’ sound for most situations. One could,
for example, have both the Prior and New notes track the same pitch (from the prior to the new) and follow
something like an S-shaped contour over the BTime interval. Any number of such schemes could be devised, but it
seems there is a psychoacoutical phenomenom at work here that leads to a discrepancy between what should sound
good and what actually does. Some early experiments with various bend shapes (that were theoretically promising)
produced disappointing results from a musical point of view. On the other hand, the simple scheme that was adopted
seems to be quite musical. However, if someone experimenting with this idea should come up with another
musical-sounding curve that is superior to the linear contour used, there is room for one more drop-down box where
the For Minor 2nd >> label is now. This dropdown could be used to select from several bend contours.

Prior
Note

BTime is the total bending interval
Red - Pitch of Prior Note fading out Green - Pitch of New Note fading in

New
Note

0

Figure 6

BTime

Linear Bend Contour

Bend_Amt

Bend_Amt

25

Coming up with the right settings for a great-sounding legato preset is not unlike programming a synthesizer.
By studying what the various synthesizer controls do and how they interact you can then experiment with settings and
learn by listening to the results. Synthesizers usually come with a number of factory presets and it’s often easier to
pull up a preset for an instrument or sound that’s similar to the one you are trying to develop and then try to
intelligently tweak it.

Similarly, when setting up the SLS for use with a new instrument patch, the easiest way to begin is to pull up
a preset for an instrument that has similar characteristics and then tweak the settings for the best sound. However, in
order to do this, you must have a good grasp of what each control does and how they interact. So obviously you
should first read the various technical discussions presented in this User’s Guide to gain a good understanding of the
various parameters from a theoretical point of view.

While tweaking an existing preset may seem like it will provide a fairly quick way to bring up a new
instrument, you’ll probably find this to be the case only after you have acquired some ‘hard won’ experience with the
process. In order to do this, it is suggested that you try to bring up a few instruments from scratch using a procedure
similar to the following.

 NOTE: be sure to set the instrument range before you begin. Throughout the legato preset design,
disable all other member scripts such as the SVS by clicking the KSP’s Bypass button for each script. This is to
make sure that you aren’t being confused by some other effect being added by another script. Next, set up the SLS
parameters as follows. Turn off the bend function by setting Bend = 0. Then set the release mode to Knob Setting
and set RlsFade = 100%. Next set the offset mode to Manual Mode and set the Offset knob to 0 ms. Set
AtkFade = 100% (remember NodeVol is igmored when AtkFade = 100%). Finally, set XTime to about 100 ms
as a starting point.

Now, before changing any settings, disable the legato effect entirely (use the SLS Mode Menu in the lower
right-hand corner of the control panel) and select Solo Mode . Next play a few legato phrases (ie play with
overlapping notes) to get familiar with how the patch sounds when playing with just the Solo Mode active. When
you play a new note in Solo Mode , any prior note still held receives a note-off command causing it to proceed to its
envelope’s release phase. Thus the notes are packed tightly together to the extent that the prior note’s release occurs
during the attack of the new note. In particular listen to how sharp an attack the patch was sampled with.

Now, enable the legato function (using the SLS Mode Menu) and play a legato phrase. Listen to how well
or how poorly the crossfade softens the note transitions compared to the Solo Mode . If the instrument in Solo
Mode has a fairly sharp attack, you can usually set XTime rather low (50 to 150ms or so). On the other hand, if the
attack is rather slow in Solo Mode , XTime may have to be set somewhat higher. However, resist the urge to fix
everything by raising XTime excessively. High values of XTime bring with it all sorts of bad side effects that have to
be dealt with. One of the first things to try before raising XTime, is to raise the sample offset to see if getting rid of
the attack portion of the ‘inside’ notes helps. But, don’t raise Offset any higher than needed either. Rather use just
enough of both XTime and Offset but don’t overdo it. Also, remember, that Offset only works if the instrument
groups in K2 are operating in Sampler mode, offset is always ignored and treated as zero when K2 is in DFD
mode.

26

It can’t be emphasized enough that setting XTime too high and then trying to compensate with the other
parameters is a prescription for a ‘less than stellar legato preset. You can always raise XTime a little as needed
during your final rounds of tweaking. Now, once you have established a minimal starting point for XTime and
Offset that seem to provide fairly smooth legato transistions, it’s probably a good time to introduce the bending
effect. For a starting point, set BTime to the same value as XTime and then set Slope = 1.0 and Bend = 20 cents.

Now play some minor 2nds (legato) and listen to the bend effect. Raise or lower the Bend value to provide
the right amount of bend (for when you play an interval of a minor 2nd). Now play some octaves (legato of course)
and slowly raise the value of Slope until the amount of bend sounds good for when you play an octave interval.
Then, start listening to how wide legato intervals sound (5ths to Octaves) and listen for sounds of harmony or
chorusing during the crossfade interval. If you have set XTime fairly low, it’s unlikely you will hear anything like this
but it’s not uncommon for higher XTime settings. If you hear some undesireable effect along these lines, try lowering
the value of RlsFade . You may need to set the value as low as 10% (but don’t set it any lower than necessary) to
subdue any chorusing or harmony artifacts, especially when you play wider intervals.

Now as you play lots of legato phrases both slow and fast listen for any problems. For example if everything
sounds fine for slow passages but fast passages sound a little sluggish (usually when you have XTime fairly high), you
may have to introduce a 2-segment fade-in contour. Another reason you may have to do this is if you seem to get a
little volume dip between notes (again this usually occurs only for high XTime values). If you feel you need to
introduce a 2-segment fade-in contour, begin with about 50% for both AtkFade and NodeVol. Then slowly lower
AtkFade relative to NodeVol (ie lower AtkFade or raise NodeVol). Generally you will want to avoid settings
where NodeVol is set lower than AtkFade. You may also find that once you introduce a 2-segment fade-in
contour, you will be able to raise XTime a little without as much ill-effect as there was with a 1-segment fade-in
contour. Since all 3 of these controls interact quite a bit, try changing all of them iteratively in small amounts rather
than changing one a lot. In the end your ears will have to be your guide but you should also have a good feel for what
to expect when you change something. As already discussed in the section titled ‘Understanding the Crossfade
Contouring Controls’ there are a lot of nonsensical settings for these controls which should be avoided.

On the bend function side of things listen to not only the bend amount but the bend rate. If you think a faster
rate would sound better, first try lowering BTime a little rather than raising Bend. On the other hand if you think a
slower rate would sound better try the opposite. Of course you may now want to tweak the Bend and/or Slope
setting. Also, somewhere along the line you might want to assign the Pitch Wheel (or some other MIDI CC) for
add-on bend control. Then as you play legato phrases you can increase the bend effect as you play when it seems
musically appropriate. Initially try this with the companion add-on range, ie CC Range (for the Bend CC) set to
100%. Try to set CC Range such that you are using most of the range of the CC but never running out of
headroom. If you are running out of CC headroom, increase the CC Range and if you are using too small a fraction
of the CC’s range, decrease the setting of CC Range.

When you think you have the settings pretty close to optimum, you might want to listen to the effect of using
something other than the fixed, manual offset mode. The Manual +Rand mode can sometimes help reduce the
legato-form of the machine-gun problem. Depending on your playing style, you might also want to try the Key-Lift
release mode. Of course you can also assign MIDI CCs for XTime and BTime so that more things can be varied
in real time. Obviously you may be limited as to how many CCs you can manipulate at one time but, if you are
recording to a sequencer, you can always make multiple passes if necessary. The more real time controls you
can use artfully, the more realistic and convincing your legato passages will be compared with a ‘set it and
forget it’ approach. After you get the hang of it, you’ll no doubt settle down to your own style of making legato
settings but the plan just outlined will serve as a good introduction to the basics.

27

Introduction
The Vibrato effect modulates both the pitch and volume of a held note. The SVS allows you to set the

amount of pitch and volume deviation independently and in addition, the modulation rate and its basic waveshape can
be controlled. The basic modulation is trapezoidal but the ‘flat-top’ duty cycle, Pk Dwell, can be altered to provide
waveshapes ranging from triangular to nearly square as depicted in Figure 7.

Figure 7
Modulation Waveforms Available with the SVS

+Peak

-Peak

Center

T = Period

Pk Dwell = 0%
Pk Dwell = 33%
Pk Dwell = 90%

The maximum amount of pitch and volume deviation is set by the Width and Depth panel knobs
respectively. The frequency of these modulations and the waveform shape is set by the Speed and Pk-Dwell knobs
respectively. To these four parameters, various kinds of random variations can be applied over time using the edit
boxes named Width-Var, Depth-Var, Speed-Drift/Speed-Per, and Wave-Drift/Wave-Per. The combination of
all these modulations and variations produce the ‘Vibrato Effect’ and the overall intensity of this effect can then be
controlled over time in several different ways.

With the Vibrato Control Menu set to Vib-Amt Only, the overall intensity of the ‘Vibrato Effect’ (from 0
to 100%) is determined by the (MIDI controllable) knob named Vib-Amt. In this mode you can use the assigned
MIDI CC to vary the amount of the ‘Vibrato Effect’ over time in any way you desire. With the Vibrato Control
Menu set to Envelope Only, the amount of the ‘Vibrato Effect’ is controlled over time by a programmable
envelope. Finally, with the Vibrato Control Menu set to Vib-Amt + Env, the overall amount of the ‘Vibrato
Effect’ is controlled over time by the combined effects of the Envelope and the Vib-Amt knob (or its assigned CC).

The Envelope has four parameters which can be set to control the vibrato intensity over time. The Onset
edit box can be used to set an onset delay from when the note starts until the effect is brought in. During the Onset
time (in vibrato cycles), the intensity of the vibrato will be zero. For example, if vibrato Speed is set to 4.0 Hz, setting
Onset = 8 will produce an Onset delay of 2 seconds. The Rise time edit box can be used to set the time it takes
(after the onset delay) for the vibrato to ramp up to max. The units for Rise time, like Onset delay are vibrato
cycles. Once the vibrato is fully established (ie the Onset delay has expired and the Rise time has passed), the
vibrato intensity can be reduced slowly over time to simulate the ‘relaxation’ of vibrato often used by performers
when very long notes are held. The Decay and Sustain parameters are used to set this ‘relaxation’ effect. The
Sustain edit box sets the ‘final level’ (as a percentage of max) that the vibrato intensity will decay toward, and, the
Decay edit box sets the time it takes for the decay to occur (in vibrato cycles).

28

Combining Vib-Amt and Envelope Control
The MIDI controllable Vib-Amt knob and the Envelope generator can be thought of as a pair of cascaded

attenuation controls for the intensity of the vibrato effect. Thus, if VI is the maximum intensity of the effect, then the
intensity heard is given by:

(1) Intensity Heard = VI * (Vib-Amt / 100) * (Env / EnvMax)

Note that if Vib-Amt is minimum, ie its value is 0%, then no vibrato effect will be heard regardless of what value the
envelope generator assumes. Similarly, if the envelope generator value is zero, then no effect will be heard regardless
of the setting of Vib-Amt. Thus if you are using both the Envelope and Vib-Amt, and you set an Onset Delay for
the Envelope , you will not be able to raise the vibrato intensity with the Vib-Amt knob (or its assigned CC) during
the onset delay since the Envelope will keep the output level at zero. The effect of the Vib-Amt can be eliminated
by setting it to100% or by selecting Envelope Only with the Vibrato Control Menu. The effect of the Envelope
can be eliminated by selecting Vib-Amt only (with the Vibrato Control Menu).

Humanizing the Vibrato Effect
To add more realism to the vibrato effect, several humanizing functions provide pseudo-random changes to

the parameters. You can add a small amount of random deviation to either the Width or Depth (or both
independently) using the Width-Var and Depth-Var edit boxes to specify a percentage limit for the variations.
Also, the vibrato Speed can be varied with a small, random ‘drift’ component to simulate the human fatigue and
imperfection factor (using the Speed-Drift/Speed-Per edit boxes). For even more realism (for non-zero Pk-Dwell
settings) you can apply a random drift to the vibrato ‘waveshape’ using the Wave-Drift/Wave-Per edit boxes.

Setting Random Drift
Two parameters, Speed and Pk-Dwell, can be varied with a special kind of random drift component. For

example, Speed drift is set with the two edit boxes labeled Speed-Drift and Speed-Per. Speed-Per specifies a
maximum percentage (+/- of the Speed knob setting) that Speed is allowed to change during one vibrato cycle.
However, unlike the random changes made to Width or Depth (which are always made from the knob value),
Speed-Per changes are made from the last value (ie the knob value plus the accumulated random changes). Since
there will be on average an equal number of ups as there will be downs, you might think that over the long haul, the
‘average’ value of Speed would remain near its knob setting. However, it is the nature of random numbers that
periodic ‘streaks’ of more ups than downs (and vice versa) will occur over time. When this happens, there will be an
accumulated ‘drift’ from the center value. The Speed-Drift edit box sets an upper limit on this accumulated drift that
will be allowed (so that Speed doesn’t ‘drift’ too far from nominal). So, generally, you will want to set Speed-Per
to something less than Speed-Drift. This type of random variation in vibrato speed is much closer to what happens
in the real world and therefore lends more realism than a straight randomization ‘from the center’.

Similarly, you can apply the same kind of ‘random drift’ to the waveform shape using the two edit boxes
named Wave-Drift and Wave-Per. The Wave-Per setting sets the maximum percentage (+/- of the Pk-Dwell
parameter) that can occur in a single vibrato cycle. Remember that Pk-Dwell determines the percentage of the
vibrato cycle during which the trapezoidal waveform is flat-topped. The Wave-Drift setting determines the overall
maximum accumulated drift allowed as a percentage of the Pk-Dwell value.

This kind of drift away from the center value is known mathematically as a ‘random walk’ and often appears
in math textbooks as a humorous puzzle known as the Drunkard’s Walk. It has to do with an intoxicated man
standing under a lamppost and taking steps in purely random directions (both away from and toward the lampost).
One question often asked is: ‘after some time, how far will he be from the lamppost’? Since his moves are purely
random, at first you might think that he would pretty much stay put. But, the surprise answer is that his average
distance from the lamppost will always continue to increase over time!

29

The Vibrato Script Control Panel

13152 14 43 108

11 7

9

523 1622 172021

18

6 19

1 12

(1) Preset Selector drop-down menu. Selecting an Instrument or Instrument Class from this menu
will set certain key parameters to a good starting point for you to further customize by ear. For
a list of key parameters included in the SVS built-in presets, see page 13. For complete information
on User Presets and other features of the SIPS Preset System, see page 8.

(2) Vibrato Width knob. Sets the maximum amount of pitch modulation (+/- in cents).
NOTE: pitch modulation is always synchronous with any volume modulation set with (3).

(3) Volume (tremolo) Depth knob. Sets the peak amount of volume modulation (+/- in db).
NOTE: volume modulation will be synchronous with any pitch modulation set with (2).

(4) Vibrato Speed knob. Sets the nominal frequency of the vibrato (pitch and volume modulation) in Hz.

(5) Pk Dwell waveform shape knob. Sets the duty cycle of the flat top and bottom of the trapezoidal
waveform used for Vibrato modulation. With Pk Dwell set to 0.33, the waveshape is that of an
equilateral trapezoid (see the Black curve in Figure-7, on Page 27).

(6) Vibrato Amount knob. When selected by (7), controls the total overall amount (0 to 100%) of the
‘Vibrato Effect’ that will be heard. This knob can be assigned to a MIDI CC using (19) to manually
control the overall vibrato intensity over time.

(7) Vibrato Control Menu selections include: Vib-Amt Only, Envelope Only, and Vib-Amt + Env.
When set to Envelope Only or Vib-Amt + Env, the control envelope is programmed with the
settings of edit boxes (8), (9), (10), and (11)

(8) Envelope Onset edit box. When a new note is played, vibrato isn’t added until after the onset delay
period set with this edit box. This delay time is in vibrato cycles. For example if (4) is set for 5.00 Hz,
a delay setting of 8 will delay the onset attack of vibrato for 1.6 seconds.

(9) Envelope Rise edit box. After the onset delay expires, the ‘Vibrato Effect ‘will ramp up to maximum
over the time period set by this edit box (again in vibrato cycles). In other words this parameter
governs how slowly or abruptly the vibrato effect is brought in after the Onset delay.

(10) Envelope Decay edit box. After the ‘Vibrato Effect’ is established (ie after the onset delay and
ramp up), the envelope can be made to decay slowly over time. This edit box allows you to set the
number of vibrato cycles over which the envelope decays to the level specified by (11).

30

(11) Envelope Sustain level edit box. This box sets the percentage of the full ‘Vibrato Amount’ that the
intensity envelope will decay to over the number of cycles specified in (10).

(12) Width Var. sets the limit for random variations (as a percentage +/-) of vibrato Width.

(13) Depth Var. sets the limit for random variations (as a percentage +/-) of vibrato Depth.

(14) Speed Drift sets an upper limit (as a percentage +/- of speed) that can occur from accumulated
random variations in Speed.

(15) Speed Per sets the amount of random change in Speed (as a percentage +/-) that can occur in
one vibrato cycle.

(16) Wave Drift sets an upper limit (as a percentage +/-) that can occur from accumulated random
variations in Pk Dwell.

(17) Wave Per sets the amount of random change in Pk Dwell (as a percentage +/-) that can occur in
one vibrato cycle.

(18) Instrument Range Display Box
Displays the Low Key and High Key of the range set (by the SLS) for the Instrument.

(19) Vib-Amt CC assignment-button. Allows you to assign a MIDI CC to control the overall
‘Vibrato Effect’ as controlled by the Vib-Amt knob (6)

(20) Speed CC assignment-button. Allows you to assign a MIDI CC for add-on control of Speed.
The range of control provided by the assigned CC is set by (21). NOTE: If the Pitch Wheel is
assigned, it will be used in the uni-polar mode (see page 6).

(21) CC Range (for Speed) edit box. Sets the maximum percentage of Speed that can be added by
an assigned MIDI CC (20).

(22) Depth CC assignment-button. Allows you to assign a MIDI CC for add-on control of Depth.
The range of control provided by the assigned CC is set by (23). NOTE: If the Pitch Wheel is
assigned, it will be used in the uni-polar mode (see page 6).

(23) CC Range (for Depth) edit box. Sets the maximum percentage of Depth that can be added by
an assigned MIDI CC (22).

13152 14 43 108

11 7

9

523 1622 172021

18

6 19

1 12

31

Guidelines For Making Vibrato Settings
Generally, the easiest way to setup the SVS is to recall a preset for a related instrument family and then tweak

it for the desired instrument. However, to familiarize yourself with what each parameter does, and for those situations
where you may just want to start building a preset from scratch, this section presents a set of simple guidelines for
making SVS settings.

A good way to start building a preset is to select the Preset named ‘* Basic Setup *’. This calls up a basic
vibrato configuration by turning off the Envelope and all random variations. It also turns off volume modulation
(Depth) and sets the waveform to a equilateral trapezoid (33% dwell). It leaves just a simple 4 Hz pitch modulation
of about +/- 3 cents. After recalling the Basic Setup, assign a convenient CC (such as the Mod-Wheel) to control
the Vib-Amt knob and turn off MIDI control of Speed and Depth so these parameters won’t change accidentally.
For the rest of this discussion, we’ll assume you assigned the Mod-Wheel to Vib-Amt. Now, push the
Mod-Wheel to max (so that Vib-Amt will be 100%) and then you can begin the prelimnary setup.

While playing and holding a note, adjust the Width knob for just a little more intensity of the effect than you
would ever want for a maximum. You may also want to adjust the Speed knob (if 4.0 Hz is not a suitable vibrato
rate) for the instrument you are setting up. You may then want to experiment with different waveshapes for the
vibrato by adjusting the Pk-Dwell knob.

Now reduce the Mod-Wheel a bit until you have a ‘pleasant’ amount of vibrato going and then raise the
Depth control to add some synchronous volume modulation to the pitch modulation. Don’t overdo this. Usually
only a small amount of volume modulation is needed for a realistic effect. Now, start playing some phrases and use
the Mod-Wheel in the conventional way to control the intensity of the effect and see if you have things
approximately right.

Next, try adding small random variations to Width and Depth using the Width-Var and Depth-Var edit
boxes. Also, set a pair of values for vibrato speed ‘drift’ (ie Speed-Drift and Speed-Per) and, if Pk-Dwell isn’t set
to zero,. you can try adding some ‘drift’ to the waveshape (by adjusting Wave-Drift and Wave-Per). This can
provide a particularly realistic-sounding variation to the vibrato (if you don’t overdo it). The drift edit boxes are set
as percentages of the parameters they modify so if Pk-Dwell is zero, there can be no variation produced by the
settings of Wave-Per and Wave-Drift.

If you want to avoid multiple sequencer recording passes, and you think you might have your hands full ‘riding
the CCs’ for the SLS, you might be able to automate most of the Mod-Wheel movements you would use by
employing the SVS Envelope feature. To setup an appropriate envelope, first use the Vibrato Control Menu to
select the Envelope Only mode. Then, dial in some appropriate settings for Onset delay and Rise time and play
and hold a long note while you experiment with the Decay and Sustain settings. You might just be able to come up
with suitable settings that will handle most situations without the need for riding the Mod Wheel.

Now when it comes to actually using your setup with a specific instrument, you may also want to assign
additional MIDI CCs to allow you to vary vibrato Speed and possibly Depth in real time as you play (or under
control of your MIDI sequencer) to lend additional variation related to musical context. Finally, you may want to do
some iterative tweaking of the parameters and when you get it sounding the way you want, save it as a User Preset
and Rename it accordingly. Then, so you won’t lose your new preset, you can either re-save the .nkp for the SVS
or, you can re-save the instrument .nki (along with the script).

Besides the Vib-Amt Only and Envelope Only modes, there might be situations where some combination
of the two may be useful. If so, you can use the Vibrato Control Menu to select the Vib-Amt + Env mode and
experiment with both control mechanisms active. Review Combining Vib-Amt and Envelope Control on page 28
so you will know what to expect.

32

SIPS Tips, Techniques, and Musings
Theo Krueger

SIPS provides such an amazing series of tools that you’ll quickly notice it can elevate your sample libraries to
new levels of realism and natural phrasing. To help you get the most out of it, here are some guidelines that I have
found helpful.

Shoot for Equal-Energy Transitions
Shoot for Equal-Energy Transitions. The first and most important thing to keep in mind when experimenting

is, “Equal Energy”. We want every transition we make from note to note to be as seamless as possible and with
equal volume to get the best legato effect. Try loading a Flute patch and keep on playing the same two notes. The
first thing you will realize is that there is a small fade-in or a small volume ‘jump’ whenever a new note comes in.
Depending on the XTime you have set, you will need to set the AtkFade and NodeVol accordingly in order to make
the transitions seamless and with ‘equal energy’. The best way to hear this is to listen at the transients of a sound —
the violin bow or the flute breath noise, etc. Once you get those noises to be consistent you are on the right path.

Generally, for a small XTime (of 0.150 and below) you will need a small AtkFade and NodeVol to get the
best results, but, if you need a bigger XTime you will realize that these three values are somewhat proportional. So,
for an XTime of say 0.500, you will need both a larger AtkFade and NodeVol to keep the transitions seamless. It is
important that your samples are 'compatible' with this equal volume thinking. In modern libaries there are a lot of
expressive samples with rises and drops in volume. It will be much harder to get good results with those because
moving from sample to sample will have volume inconsistencies. Generally, in testing, we found that simple "Sustain"
or "sustain vibrato" samples worked the best since they are the most uniformly recorded.

Bending and intervals:
Depending on how lyrical and lively you want your bends to be, you can set the bending value and the time in which
it occurs to more or less. Although setting the bend to cover the full interval at first seems like the most reasonable
way to think -- since two notes should be connected like that in reality--, for most situations less bend produces
better results. When the instrument is in a mix, the bending happens 50% with the script and the other 50% of it is
psychoacoustical. So even though a transition with the script might not have as much bend as in reality, your brain
will recreate the rest and you will actually hear it. Also, sections require much less bending (around 5-15) while solo
instruments can be more expressive with up to 50-70.

The Xtime knob:
Setting Xtime depends mostly on how fast the instrument you choose can play or will play in your song. If it's

a piccolo, you will have XTime very low so it can be used even in really fast runs and trills. For a french horn and
Cello you can increase the XTime more. Don't forget that you can always change these parameters in realtime by
using midi CC's from within the sequencer. No one setting can be perfect for all occasions.

Setting the optimal sample position:
Generally, in order to get better legato phrasing, the sample position (sample-start offset) should be set after

the attack of the instrument. You will soon find that this defeats the "overlapping notes" philosophy you might've been
following untill now... what a relief!! Depending on what result you are after, some instruments will need to have the
start position right on the attack and others way after it, so if you want the trombone blowing sound to be heard in
each transition, setting the position right at the start will give you that effect. If you are programming instruments with
embedded vibrato (violin, oboe, etc.), the best sample position is right after the attack, before the vibrato kicks in.
When going from vibrato to vibrato there can be some ugly sounding effects while from straight tone to straight tone
it is less likely.

33

SIPS Tips, Techniques, and Musings
Andrew Keresztes

All of my preset demos were created using East West Quantum Leap Symphonic Orchestra XP Pro to il-
lustrate the SIPS Legato tool. These are just examples of what can be done with the SIPS in real time without tons
of editing to get a legato type sound. These demos are not benchmarks… like any instrument, with time and prac-
tice using SIPS, I’m sure much better results can be achieved. Most of the patches I used had modulation
cross-fade features that would allow the instrument to be more expressive. For example, if the modulation con-
troller was at 127, the violin would have a sharp attack and if the mod wheel was at 0 then it would have a slow
attack.

Prepare Your Library Instrument
So, first things first. In order to incorporate the SIPS script with EWQLSO I had to eliminate any release

groups in the patch. Otherwise, there would be a legato pitch-bend and a reverb decay without a pitch-bend
playing back at the same time. The release groups can be identified by the suffix ‘rel’ in the group names when you
click on the Group Editor button inside the patch editor. Select all the groups that have a “rel” appended to them
and under the Group edit drop-down menu choose “Delete Selected Group(s)”. Since so many libraries now in-
clude release samples, I thought this might be useful information.

Use MIDI CCs
Now, from the Script Editor, load in the SIPS Legato tool. In all my mp3 examples, I used continuous con-

trollers (CC) to vary the way SIPS controlled the legato passages. In my case, I assigned CC 110 to both XTime
CC and BTime CC (both controlled by the same slider). I then assigned CC 111 to Bend CC. This way I was
able to ride faders as I was playing parts and vary the amount of the cross-fade and Bend Time between the parent
and child note (the 1rst and 2nd note) with just one slider. To make the legatos into more of a glissando, I would
then ride the CC 111 fader (assigned to Bend CC) as I was playing. It can be a little tricky, but it becomes more
intuitive as you do it. Again, this was just my approach to it…. I’m sure there are better ways that we will hopefully
all share with each other.

So, if you were (for example) playing my solo violin SIPS Legato preset, you would be able to play faster
passages with the sliders (in this case CC110 and CC111) all the way down. Then to get a slower glissando effect,
you would ride both sliders up 2/3s or all the way up. This is all based upon the initial settings of the SIPS Legato
Patch. You can customize it anyway you’d like.

Use an Appropriate Patch
I want to stress how important it is to select the right sound patch to be used in conjunction with SIPS. If

your patch has a really slow attack, you won’t be able to play faster legato passages…. So… always bear in mind
what kind of sounds you want associated with SIPS.

Have fun.

Thonex

Installing A Third-Party Script
(Windows)

NKP Files
If you have a script that’s supplied in the .nkp file format, you can make it available to K2 as follows. Launch

Windows Explorer and navigate to the main K2 program directory. For a typical default installation of K2 the path
would be: “C:\Program Files\Native Instruments\Kontakt 2” but you may have put it elsewhere. Once you have located
the Kontakt 2 directory, navigate further to:

C:\Program Files\Native Instruments\Kontakt 2\presets\scripts.

You can now put a copy of the .nkp file anywhere in the scripts folder (or any of its sub-folders). Or, you can create a
new sub-folder of your own and put the .nkp file in it (just so the file is accessible via the ‘scripts’ folder). NOTE: If
you do this while K2 is running you may have to close and re-launch K2 before you will see your new script
in K2’s list.

Running A Script
Once a 3rd-party script is installed as a .nkp file in K2’s ‘scripts’ folder, you can run it just like any other script.

For example, to add the script to one of your instruments, do the following. Launch K2 and then load the desired
instrument. Open the instrument editor (by clicking on the Wrench Icon) and then Open the Script Editor. Up to 5
scripts can be installed for any given instrument so choose one of the 5 tabs to select in which of the 5 available slots you
wish to install the new script (usually this will just be the first slot). Now, click the Script button on the left side of the
KSP Editor panel and navigate through the folders of the drop-down menu to find the desired script and click on it. The
script’s control panel (if any) will appear and the script should be ready to use with the current instrument. Depending
on various details of how the script is implemented, you may need to adjust some knobs and make other settings for the
best performance with the loaded instrument.

If you wish to retain your custom settings for the script (for the next time you use it) there are two ways to do
this but both of them involve re-saving the script. You can either resave the .nkp file itself or you can resave the
instrument as a .nki file. If you do either of these, you may want to resave with an altered name so that you will still have
the original version of the script and/or instrument intact. To resave just the customized script as a new .nkp file, click
on the Script button and then select Save Preset. This will open a standard Explorer dialog where you can now save
the script under any name that you wish. To save the customized script with the instrument, simply use K2’s Load/Save
button as you would to save any instrument. If you save the script with the instrument, the next time you load that
instrument the script will be loaded with it and, the customized panel settings should also be restored. If you have
resaved the script as a new .nkp file, you can load it just as you did initially. That is, first load an instrument that you
want to use the script with, and then load the script. The only difference between this and when you first loaded the
supplied .nkp file, is that the resaved .nkp file will load with your customized settings (that you had when you saved the
.nkp) still intact.

NOTE: In order for your customized panel settings to be saved and recalled as described above, the
script must be written properly using ‘persistent’ variables in all the appropriate places. Most scripts will be
written this way but, if you have one that isn’t, your customizations may not be properly saved and recalled.
Also, regarding using more than one script with an instrument, be advised that in general, you may not be
able to use several scripts together unless the scripts are specifically designed to be used together. See
page 5 of this User’s Guide for more information on chaining or cascading scripts.

34

Installing A Third-Party Script
(Windows)

Source Files
If you have a script that is supplied as a .txt file, the procedure to install it is different from that of installing a

.nkp script file. Source code files can usually be viewed in any plain text editor such as ‘Note Pad’ and what you will
see is the series of instructions that the script’s author used when writing the script. If the source code was written using
all the syntax rules of the KSP scripting language, it is known as a K2-Ready or simply a K2-Source file. To install and
use such a source file with an instrument, launch K2 and then load the instrument you want to use the script with. Open
the instrument editor (by clicking on the Wrench Icon) and then Open the Script Editor. Up to 5 scripts can be installed
for any given instrument so choose one of the 5 tabs to select in which of the 5 available slots you wish to install the new
script (usually this will just be the first slot). Assuming that the slot you choose is empty (ie it doesn’t already contain a
script), click on the Edit button to open the KSP Editor’s empty text-entry window. If the slot you choose already
contains a previously loaded script, the editor’s window will have text in it. If this is the case, fiirst click on the Script
button and choose the Empty preset. This will clear-out the old script so that the KSP Editor’s text entry window will
now be empty.

With the .txt file loaded into ‘Note Pad’, hit ctl-A, ctl-C to select all the text and put it in the Windows
clipboard. If you are using a text editor other than ‘Note Pad’, use whatever procedure is appropriate to select all the
text and place it into the Windows clipboard. Now click on the empty KSP Editor text window (to give it the focus) and
then hit ctl-V to paste the clipboard into the KSP text window. Then, click the ‘Apply’ button and the orange square
to its left should go out -- indicating a successful compilation of the K2 source code (the script’s control panel, if any,
should now appear). Next, name the script by double-clicking the title box and typing the desired name followed by the
enter key. Finally, you can close the text window and save the script as a .nkp file To do this, click the Script button
and select ‘Save Preset’ at the bottom of the drop-down list. An Explorer-type window should open with K2’s
‘script’ folder at the top and several sub-folders under it. You can now select a sub-folder (or create a new one) and
then give the preset a suitable name and save it. In order for K2 to find it later, you must save it in the ‘scripts’ folder
or any subfolder under it. You may now proceed as described in ‘Running A Script’.

NOTE: When you load a new K2 source text file as described above, you will get a ‘fresh’ install whereby the
new script will be compiled with all the panel settings and parameters initialized to their default values (as originally
established by the script’s author). When you are installing a new source script into a slot that has had a previous script
installed in it and you want a ‘fresh’ install, it is important that you first load the Empty preset before pasting the
new script into the text window. If instead of clearing out the old script, you simply use ctl-A, ctl-V to paste the new
text ‘over’ the old text, when you hit ‘Apply’, unexpected results may occur. Since K2.1, NI has added
double-buffering of persistent variables. So, if the previously loaded script uses persistent variables with the same name
as used in the new script, the previous values assigned to these variables will be retained when the ‘Apply’ button is hit.
This may or may not be what was intended. For a ‘fresh’ install where you want the new script to be set to its defaults,
you won’t want previous values to be retained. And, since it’s not always easy to tell if the old script has persistent
variables with the same name, if you want a ‘fresh’ install, you should always be sure to load the Empty script
first. On the other hand, when you are updating to a new version of the same script (and the script has been written
properly), this retention of persistent variables can be profitably exploited. See page 9 for a discussion of how SIPS
uses this feature to perform an Auto-Import Update.

35

Installing A Third-Party Script
(Windows)

Special Source Files
While source code files can be created in the KSP text editor, script authors will seldom do that for anything but

a very small script. The KSP editor is not too friendly and writing a non-trivial script in such an environment would be
impractical. Therefore, source text files are usually created using an ‘external’ editor.

If the script is developed in a standard external editor such as ‘Note Pad’, the source code will be written in K2
format and can be pasted into K2 as previously described. However, Nils Liberg has written a very powerful editor,
specially geared toward writing K2 scripts. His KScript Editor provides a whole plethora of very powerful syntax
extensions and features that make writing and organizing scripts so much easier than without it. The result is that almost
every serious script writer is now using the NL Editor to write their source code. However, NL source code cannot
be directly pasted into the KSP Editor and run. NL source code must first be processed and converted to K2 source
code. If you have the NL Editor this is very easy to do by simply hitting the F5 key on your keyboard. This causes the
NL Editor to compile the source code into K2-Ready code and place it in the windows Clipboard.

So, even if you don’t write scripts, you should get a copy of the NL Editor in case you need to install a source
file written with NL extensions. Moreover, even for scripts written without extensions, you may still want to use the NL
Editor because you will be able to view and/or print the code with syntax highlighting and enjoy the many other useful
features as well. And, since Nils has graciously made his editor available as a free download, every K2 user that intends
to use or write scripts should have a copy of this editor. http://nilsliberg.se/ksp/ Once you’ve had a chance to use Nils’
KScript Editor (not to mention the many other very useful scripts available on his site), maybe you’ll want to click his
PayPal button and make a generous donation to show your appreciation for all the wonderful contributions he has made
and continues to make for the benefit of the K2 community.

Placing the K2-Ready Source in the Clipboard
For purposes of installing and/or updating a script, it is often necessary to put a copy of the script’s source code

(in K2 format) into the clipboard. From the clipboard the source code can then be entered into to the KSP editor’s
text window where it can be compiled and run. 3rd-party scripts may be supplied as source code (a .txt file) or in NI’s
preset format (a .nkp file) or both. When supplied as source text, it may be either in K2 or NL format as already
discussed. The following will describe some of the ways you can place the K2 source into the clipboard.

If you were supplied with a K2-Source-code file for the script, simply load it into any general editor such as
Note Pad. Then, whenever you need to place a copy into the clipboard, simply use ctl-A, ctl-C (while in Note Pad).
If you were supplied with an NL Source-code file, simply load it into the NL Editor. Then, whenever you need to
place a copy into the clipboard, simply hit F5 (while in the NL Editor).

If the script is supplied only as a .nkp file, you may or may not be able to place the K2 Source into the
clipboard. If the script is not ‘Password Locked’, you can use the following procedure to obtain the K2 Source.
Launch K2 and load some instrument. Open the instrument editor (by clicking on the Wrench Icon) and then Open the
Script Editor. Select the first of the 5 script tabs and then click the Script button on the left side of the KSP Editor
panel. Navigate through the folders of the drop-down menu to find the desired script and click on it. Now open the
KSP editor’s text window where you should see the K2 Source code. If you now use ctl-A, ctl-C, the text will be
selected and placed in the clipboard. You can now open Note Pad and paste the text into it with a ctl-V. After this,
whenever you need to place a copy into the clipboard, simply use ctl-A, ctl-C (while in Note Pad). NOTE: If the
script is Password Locked, you cannot use this procedure to obtain the source code (unless of course you know
or can determine the Password).

36

http://nilsliberg.se/ksp/

I’m including this page, about my background and interests, because my motivation for using K2 and writing
scripts may be quite different from most of you. As a result, what may work very well for me, may not be suitable for
what you are trying to do. However, to the extent that one of my scripts may be useful to others, I offer them freely to
the K2 community. I also try to provide a complete documentation package so that anyone skilled in the art of
programming can easily adapt and/or improve upon any of my scripts for similar or other purposes without the need for
a lot of ‘reverse engineering’ effort. So, if you find one or more of my scripts not quite ‘hitting the mark’ for your
situation and you want to tweak it, knowing what my objectives were when I wrote it might be helpful.

I'm a retired Engineer (BSEE) and hobby musician. I retired in 1990 after about 30 years that was almost equally
divided between Analog and Digital Circuit Design and then (in the latter half of my career), Microprocessor and
Software Engineering. On the musical side of things, I've been making (or attempting to make) 'one-man-band'
recordings since about 1951 via various forms of ‘multitracking’. I've always used real acoustic instruments but, since
I'm getting up in years, my 'chops' are beginning to wane. So, slowly over the last 10 years or so, I've become very
interested in sampling technology as a way to allow me to continue recording past my prime. However, I won’t use
synthesis unless I can make it sound like the 'real thing' and, until recently, extremely realistic synthesis has been very
hard to do, especially for wind instruments. So my main focus has been in that area. Since I'm an old geezer, I like doing
older musical styles. For example, I do a lot of Big-Band Swing and Dixieland stuff. While I can still play all the needed
instruments, one of the consequences of 'old age' setting in is that I'm quickly starting to lose manual dexterity (arthritus
in the joints and all that sort of stuff). So, I know it’s only a matter of time before the quality will begin to suffer
noticeably.

I'm telling you all this so you will know where I'm coming from. To do convincing Dixieland, for example, the
trombone has to use the slide a lot and to syththesize a realistic trombone glissando, I needed to do formant-corrected
bending. That was my original motive for designing the PCE. Similarly, I’m hoping that my new SIPS scripts will
eventually provide convincing legato and vibrato emulation; simple LFO vibrato just doesn't sound realistic enough.
And, good sampled vibrato is too hard to come by (and too inflexible). So I've been recording my own wind-instrument
playing and analyzing the vibrato and legato sounds and trying to get a handle on what I need to do to simulate it.
However, the thing I want to emphasize here is that I may be trying to make a sampled clarinet sound good and you
may want to apply these scripts to a string patch. While legato and vibrato techniques vary considerably between
instrument families, there is also much common ground. So I'm hoping that the SIPS Scripts will eventually have enough
flexibility to be used on any instrument. But, keep in mind that it was initially crafted for wind instruments, especially
Trombone and Clarinet (my trumpet chops are still fairly good so I'll tackle that last). Another thing I should emphasize
is that I intend to use these scripts with Sequencer-controlled Playback, not Live Playing.

All that being said, I’m hopeful that by making my scripts available to the K2 community and encouraging an
open discussion about ways of improving them, we may all benefit in the end. I know that many of you are much more
accomplished musicians than I am and your input will be most valuable. As a community we are blessed with a number
of members who are also excellent programmers and many of these have shown a willingness to share their work with
us also. So, I’d like to encourage as many of you as can, to participate in future script development and testing. The
Good Lord willing, we may reap a rich harvest of very useful tools and, if nothing else, we may get to know each other
a little better, and, you can never have too many friends!

Bob
37

SIPS is distributed free of charge, all you have to do is download it and print out the .pdf manual and you’ll
be all set to go. SIPS is also ‘open source’, which means you can alter it or add to it as you wish. To facilitate that,
SIPS comes with a complete documentation package including design flow charts and heavily-commented source
code.

So, you can either just use SIPS as it is or, if you are skilled in the art of programming, you can easily modify
SIPS without having to do a lot of ‘reverse engineering’. However, if you decide to modify or build on SIPS, I
would like to ask you a favor. Please personalize what you do to distinguish it from the original. By that I mean at
least change the Title Block of the source code and use your name as the author. It would also be nice if you would
give the new script a different name, and version number series, such as ‘Son of SIPS’. The reason I’m asking you
to do this is that I intend to continue the SIPS series (at least for a while) and I want everyone to be able to
distinguish the original from yours so that the waters don’t get too muddy.

My intention from the beginning was to give SIPS free to anyone who might benefit from it. However,
knowing the effort that goes into something like this, many well-meaning friends have suggested that I at least ought
to allow grateful users of SIPS to make some kind of gift (if they were so inclined). To that I have always responded
that I really didn’t want to receive any monetary compensation, knowing that others were benefiting from my effort
is reward enough. After all, it’s more blessed to give than receive you know.

But, persistent bunch that they are, the next suggestion was that I should at least encourage SIPS users who
felt the desire (and had the means), to make a donation to one of my favorite charities. Well, after prayerful
consideration of this idea, I see no harm in it. It’s no secret that I’m an evangelical Christian and I’m always
interested in raising money for the Lord’s work. So, here’s the deal. If you are using SIPS and you find it useful, and,
you feel an overwhelming urge to want to do something nice for me in return, please click on one of the links below
and make a nice contribution to one of these fine organizations. Whether or not you do this will just be between you
and the Lord. This is strictly voluntary and I don’t want anyone to feel under any obligation whatsoever to do this,
but God Bless you if you do.

Have a fantastic day,

Bob

38

1. Make a donation to the Billy Graham Evangelistic Association.

https://www.billygraham.org/donate.asp

2. Make a donation to The Moody Bible Institute of Chicago.

https://safeweb.moody.edu/support/index.php?afterset=1

3. Make a donation to Bible League Organization.

http://www.bibleleague.org/donate/index.php

4. Make a donation to Union Rescue Mission, Los Angeles.

https://giving.silaspartners.com/donatenow/unionrescuemission/

5. Make a donation to Salvation Army.

https://secure2.salvationarmy.org/donations.nsf/donate?openform&t=US_USC*USE*USS*USW&redirect=1

6. Make a donation to Grace Brethren International Missions.

https://donatelinq.net/donate/gbim-donate.asp?mid=gbimorg

https://www.billygraham.org/donate.asp
https://safeweb.moody.edu/support/index.php?afterset=1
http://www.bibleleague.org/donate/index.php
https://giving.silaspartners.com/donatenow/unionrescuemission/
https://secure2.salvationarmy.org/donations.nsf/donate?openform&t=US_USC*USE*USS*USW&redirect=1
https://donatelinq.net/donate/gbim-donate.asp?mid=gbimorg

